BibTex RIS Cite

Modelling temperature measurement data by using copula functions

Year 2017, Volume: 7 Issue: 1, 27 - 32, 13.06.2017
https://doi.org/10.17678/beuscitech.322140

Abstract

 

In this study, methods of copula estimation are used and the temperature measurement data of the

four regions located at the same positions in the range of 01.01.2008 - 30.04.2009 was modeled

with copula functions. For dependence structures of the data sets, it is calculated Kendall Tau and

Spearman Rho values which are nonparametric. Based on this method, parameters of copula are

obtained. A clear advantage of the copula-based model is that it allows for maximum-likelihood

estimation using all available data. The main aim of the method is to find the parameters that make

the likelihood functions get its maximum value. With the help of the maximum-likelihood estimation

method, for copula families, it is obtained likelihood values. These values, Akaike information

criteria (AIC) are used to determine which copula supplies the suitability for the data set.

References

  • Abozou K. T., 2007. Copulas in Statistics, Msc Thesis, African Institute for Math.Sciences.
  • Alsina C. and Bonet E., 1979. On Sums of Unıformly Dıstrubuted Random Variables, Stochastıca, 3, 2 .7
  • Bouyé E., 2000. Copulas for Finance A Reading Guide and Some Applications Financial Econometrics, London.
  • De Matteıs R., 2001. Fiting Copulas To Data, Diploma thesis, Institute of Math. of Univesity of Zurich.
  • Genest, C., Rivest, L., 1993. Stat. inference procedures for bivariate archimedean copulas, Journal America Statistic Associative. 88, 1034-1043.
  • Gianfausto, S., Carlo D. M., Nathabandu T., Kottegoda and Renzo R., 2007. Extremes In Nature, Springer.
  • Joe, H., 1997. Multivariate Models and Dependence Concepts , Chapman & Hall,London.
  • Kotz S., Nadarajah S., 2000. Extreme Value Distributions Theory andApplications.
  • Kotz S., 2001. Correlation and Dependence, George Washington University, USA.
  • Nelsen R., 1998. An introduction to copulas, Springer.
  • Nelsena R. B, Quesada-Molina J., Rodriguez J. A U´beda-Flores L. M., 2006. On the construction of copulas and quasi-copulas with given diagonal Sect., Mathematics and Economics, 42, 473-483.
  • Shih J. H., Louis T.A., 1995. Inferences on the association parameter in copula models for bivariate survival data, Biometrics, 51, 1384, 1399.
Year 2017, Volume: 7 Issue: 1, 27 - 32, 13.06.2017
https://doi.org/10.17678/beuscitech.322140

Abstract

References

  • Abozou K. T., 2007. Copulas in Statistics, Msc Thesis, African Institute for Math.Sciences.
  • Alsina C. and Bonet E., 1979. On Sums of Unıformly Dıstrubuted Random Variables, Stochastıca, 3, 2 .7
  • Bouyé E., 2000. Copulas for Finance A Reading Guide and Some Applications Financial Econometrics, London.
  • De Matteıs R., 2001. Fiting Copulas To Data, Diploma thesis, Institute of Math. of Univesity of Zurich.
  • Genest, C., Rivest, L., 1993. Stat. inference procedures for bivariate archimedean copulas, Journal America Statistic Associative. 88, 1034-1043.
  • Gianfausto, S., Carlo D. M., Nathabandu T., Kottegoda and Renzo R., 2007. Extremes In Nature, Springer.
  • Joe, H., 1997. Multivariate Models and Dependence Concepts , Chapman & Hall,London.
  • Kotz S., Nadarajah S., 2000. Extreme Value Distributions Theory andApplications.
  • Kotz S., 2001. Correlation and Dependence, George Washington University, USA.
  • Nelsen R., 1998. An introduction to copulas, Springer.
  • Nelsena R. B, Quesada-Molina J., Rodriguez J. A U´beda-Flores L. M., 2006. On the construction of copulas and quasi-copulas with given diagonal Sect., Mathematics and Economics, 42, 473-483.
  • Shih J. H., Louis T.A., 1995. Inferences on the association parameter in copula models for bivariate survival data, Biometrics, 51, 1384, 1399.
There are 12 citations in total.

Details

Journal Section Articles
Authors

Ayşe Metin Karakaş This is me

Publication Date June 13, 2017
Submission Date August 31, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

IEEE A. Metin Karakaş, “Modelling temperature measurement data by using copula functions”, Bitlis Eren University Journal of Science and Technology, vol. 7, no. 1, pp. 27–32, 2017, doi: 10.17678/beuscitech.322140.