Research Article
BibTex RIS Cite

Design and Implementation of FPGA Based Remote Programmable and Observable Development Board

Year 2025, Volume: 6 Issue: 1, 17 - 28, 22.07.2025
https://doi.org/10.54047/bibted.1628008

Abstract

FPGA (Field Programmable Gate Array) based remotely accessible laboratories are advanced educational technologies that allow designers to design, control, observe, and monitor complex digital circuits in real-time via the internet and computer networks without geographical limitations. This study presents the design of a domestically produced FPGA development board that is remotely programmable and observable, aiming to reduce foreign dependency and high costs. The design was implemented using the Xilinx XC3S50AN FPGA chip and the ESP32 microcontroller. Through an HTML and JavaScript-based web interface, users can program the FPGA chip and observe the outputs and system behaviors in real-time via a live streaming panel. The Python-based system infrastructure enables rapid system prototyping by transferring uploaded bit files to the FPGA chip. The system's stability and flexibility were validated by successfully running various test applications. Additionally, different access levels, including administrator, laboratory, and user authorizations, ensure system security. This locally developed FPGA-based remotely programmable and observable circuit board is user-friendly, reliable, and focused on hardware flexibility and simplified user interfaces, effectively addressing the needs of educational and industrial users.

References

  • Abanto, D., Carazas, V., Solis-Lastra, J., & Aramburu, C. (2022). Implementation of a Web-based Interface for Remote Access to a FPGA Board. Proceedings of the 2022 IEEE Engineering International Research Conference, EIRCON 2022, 1-4.
  • Aitor, V. M., Garcia-Zubia, J., Angulo, I., & Rodriguez-Gil, L. (2022). Toward Widespread Remote Laboratories: Evaluating the Effectiveness of a Replication-Based Architecture for Real-World Multiinstitutional Usage. IEEE Access, 10, 86298-86317.
  • Al Qassem, L. M., Stouraitis, T., Damiani, E., & Elfadel, I. M. (2020). A remote FPGA laboratory as a cloud microservice. Proceedings - IEEE International Symposium on Circuits and Systems, 2020-October.
  • Ali, S. A., Asif, R., Hina, S., & Fatima, Z. (2018). Cloud Based Remote FPGA Lab Platform: An Application of Internet of Things. Mehran University Research Journal of Engineering and Technology, 37(4), 535-544.
  • Alçın, M., Tuna, M., Erdoğmuş, P., & Koyuncu, İ. (2021). FPGA-based dual core TRNG design using ring and Runge-Kutta-Butcher based on chaotic oscillator. Chaos Theory and Applications, 3(1), 20-28.
  • Blochwitz, C., Grothe, P., Dreier, S., Aljnabi, W., Buchty, R., & Berekovic, M. (2022). RemEduLa-Remote Education Laboratory for FPGA Design Technology. Proceedings - IEEE International Symposium on Circuits and Systems, 2022-May, 1773-1777.
  • Choi, S., & Yoo, H. (2020). Fast Logic Function Extraction of LUT from Bitstream in Xilinx FPGA. Electronics 2020, Vol. 9, Page 1132, 9(7), 1132.
  • Çelik, K. (2021). Bulut Bilişim Teknolojileri. Bartın Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 12(24), 436-450.
  • Dağcı, B., & Koyuncu, İ. (2024). FPGA Tabanlı Uzaktan Laboratuvar Uygulamaları. Içinde 5. Bilsel International Sumela Scientific Researches Congress (609-622). Trabzon: Bilsel Yayınları.
  • De Jesús Navas-González, R., Oballe-Peinado, Ó., Castellanos-Ramos, J., Rosas-Cervantes, D., & Sánchez-Durán, J. A. (2022). Digital Electronics Practice Projects for an FPGA-based Remote Laboratory. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Devachandra, T., Singh, & Kumar, Dr. M. S. (2021). Design and Development of Bluetooth Based Home Automation System Using FPGA.
  • Dodi, A. E., Wahyudi, A. H., Kurdianto, Jatmiko, N. W., Lailiyul, M. F., & Widada, W. (2022). FPGA Displays Real-Time Video Camera on VGA Monitor. Proceedings - 11th Electrical Power, Electronics, Communications, Control, and Informatics Seminar, EECCIS 2022, 129-132.
  • Drutarovský, M., Šaliga, J., & Hroncová, I. (2009). Hardware Infrastructure Of Remote Laboratory For Experımental Testıng Of Fpga Based Complex Reconfıgurable Systems. Acta Electrotechnica et Informatica, 9(1), 44-50.
  • Emin, B., & Yaz, M. (2024). Digital implementation of chaotic systems using Nvidia Jetson AGX Orin and custom DAC converter. Chaos and Fractals, 1(1), 38-41.
  • Fernandes, A., Pereira, R. C., Sousa, J., Carvalho, P. F., Correia, M., Rodrigues, A. P., … Gonçalves, B. (2015). FPGA remote update for nuclear environments. 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, ANIMMA 2015.
  • Gao, T., Xu, X., Zhang, H., & Yang, H. (2015). A highly-integrated wireless configuration circuit for FPGA chip. Proceedings of the 14th International Symposium on Integrated Circuits, ISIC 2014, 260-263.
  • García-Orellana, C. J., MacIas-Macías, M., Abengózar-García, E., González-Velasco, H., Gallardo-Caballero, R., & García-Manso, A. (2022). Remote Laboratory Platform for Microcontroller Practices. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Gruwell, A., Zabriskie, P., & Wirthlin, M. (2016). High-speed FPGA configuration and testing through JTAG, 1-8.
  • Hanafi, A., & Karim, M. (2015). Embedded web server for real-time remote control and monitoring of an FPGA-based on-board computer system. 2015 Intelligent Systems and Computer Vision, ISCV 2015.
  • Hashemian, R., & Pearson, T. R. (2009). A low-cost server-client methodology for remote laboratory access for hardware design. Proceedings-Frontiers in Education Conference, FIE.
  • Hashemian, R., & Riddley, J. (2007). FPGA e-Lab, a technique to remote access a laboratory to design and test. Proceedings - MSE 2007: 2007 IEEE International Conference on Microelectronic Systems Education: Educating Systems Designers for the Global Economy and a Secure World, 139-140.
  • Hauck, S. (1998). The roles of FPGA’s in reprogrammable systems. Proceedings of the IEEE, 86(4), 615-638.
  • Hong, Z., & Chen, T. (2023). Research and design of video brightness extraction system based on FPGA embedded platform. 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information, ICETCI 2023, 349-353.
  • Indrusiak, L. S., Glesner, M., & Reis, R. (2007). On the evolution of remote laboratories for prototyping digital electronic systems. IEEE Transactions on Industrial Electronics, 54(6), 3069-3077.
  • Juncheng, M., Juan, G., Hong, Z., Zheng, W., & Shuang, X. (2021). Develop on real-time image processing system based on FPGA and RAM combined with PC or Cloud system.
  • Karagedik, N., Bal, S., & Yayla, A. (2023). Design and Testing of a Wireless Communication Enabled FPGA Development Board: A Comprehensive Education and Application Platform from IoT to Circuit Design. European Journal of Technique (EJT), 13(2), 123-129.
  • Karataş, F., Koyuncu, İ., Alçin, M., Tuna, M., Kocatepe Üniversitesi, A., Bilimleri Enstitüsü, F., … ve Enerji Bölümü, E. (2022). II. Derece AV Blok Aritmik EKG Sinyallerinin VHDL ile FPGA-Tabanlı Tasarımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1334-1345.
  • Keskin, A., & Koyuncu, İ. (2023). Yeni Bir Fpga Geliştirme Kartı Tasarımı ve Uygulaması. Bilgisayar Bilimleri ve Teknolojileri Dergisi, 3(2), 46-55.
  • Kosan, T., Talla, J., & Janous, S. (2024). Online Education of Microcontroller Control of Electric Drives with FPGA Based HIL. 2024 IEEE 21st International Power Electronics and Motion Control Conference, PEMC 2024.
  • Mateos-Gil, R., De Toro, P. A. R., & Madarova, S. (2022). Remote Laboratory for System on Chip Design based on FPGAs. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Monzo, C., Cobo, G., Morán, J. A., Santamaría, E., & García-Solórzano, D. (2021). Remote Laboratory for Online Engineering Education: The RLAB-UOC-FPGA Case Study. Electronics 2021, Vol. 10, Page 1072, 10(9), 1072.
  • Morgan, F., & Cawley, S. (2011). Enhancing learning of digital systems using a remote FPGA lab. 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip, ReCoSoC 2011 - Proceedings.
  • Óballe-Peinado, O., Castellanos-Ramos, J., Sánchez-Durán, J. A., & Trujillo-León, A. (2024). Remote Laboratory for Multiple FPGA-Based Development Platforms. 16th Congreso de Tecnologia, Aprendizaje y Ensenanza de la Electronica, TAEE 2024.
  • Oballe-Peinado, O., Castellanos-Ramos, J., Sanchez-Durqan, J. A., Navas-Gonzalez, R., Daza-Marquez, A., & Botin-Cordoba, J. A. (2020). FPGA-Based remote laboratory for digital electronics. Proceedings - 2020 14th Technologies Applied to Electronics Teaching Conference, TAEE 2020.
  • Oh, H., Nam, K., Jeon, S., Cho, Y., & Paek, Y. (2021). MeetGo: A trusted execution environment for remote applications on FPGA. IEEE Access, 9, 51313-51324.
  • Öǧe, O. C., Aydoǧan, A., & Durusu, D. (2019). A Comparison of Two Methods for FPGA Controlled Interface Board Tests. AUTOTESTCON (Proceedings), 2019-January.
  • Ravanasa, K., & Hashemian, R. (2014). VLab, a high speed multi-accesses parallel processing remote laboratory access for FPGA design technology. IEEE International Conference on Electro Information Technology, 377-381.
  • Rigo, C. A., Seman, L. O., Berejuck, M. D., & Bezerra, E. A. (2020). Printed Circuit Board Design Methodology for Embedded Systems Targeting Space Applications. IEEE Latin America Transactions, 18(2), 257-264.
  • Rodriguez-Gil, L., Orduna, P., Garcia-Zubia, J., Angulo, I., & Lopez-De-Ipina, D. (2014). Graphic technologies for virtual, remote and hybrid laboratories: WebLab-FPGA hybrid lab. Proceedings of 2014 11th International Conference on Remote Engineering and Virtual Instrumentation, REV 2014, 163-166.
  • Schwandt, A., & Winzker, M. (2019). Make it open - Improving usability and availability of an FPGA remote lab. IEEE Global Engineering Education Conference, EDUCON, April-2019, 232-236.
  • Seetharaman, R., Shivananth, I., Ganeshakumar, M., Anitha, D., Anandan, K., & Gayathri, S. (2022). Development of Crowd Management System using FPGA Circuits. Proceedings - International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2022.
  • Skhiri, R., Fresse, V., Jamont, J. P., Suffran, B., & Malek, J. (2019). From FPGA to Support Cloud to Cloud of FPGA: State of the Art. International Journal of Reconfigurable Computing, 2019(1), 8085461.
  • Taşdemir, M. F., Tuna, M., & Koyuncu, İ. (2025). FPGA-based chaotic oscillator designs and performance analysis. Chaos and Fractals, 2(1), 8-13.
  • Toyoda, Y., Koike, N., & Li, Y. (2016). An FPGA-based remote laboratory: Implementing semi-automatic experiments in the hybrid cloud. Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016, 24-29.
  • Ursutiu, D., Ghercioiu, M., Samoila1, C., & Cotfas, P. (2009). FPGA LabVIEW Programming, Monitoring and Remote Control. International Journal of Online and Biomedical Engineering (iJOE), 5(2), 34-41.
  • Wang, D., & Zhang, P. (2010). The technology research of remote automatic detection and fault diagnosis based on JTAG boundary scan. Procedia Engineering, 7, 270-274.

FPGA Tabanlı Uzaktan Programlanabilir ve Gözlemlenebilir Geliştirme Kartı Tasarımı ve Uygulaması

Year 2025, Volume: 6 Issue: 1, 17 - 28, 22.07.2025
https://doi.org/10.54047/bibted.1628008

Abstract

FPGA (Field Programmable Gate Array-Alanda Programlanabilir Kapı Dizisi) tabanlı uzaktan erişimli laboratuvarlar, tasarımcıların coğrafi kısıtlamalar olmaksızın internet ve bilgisayar ağları aracılığıyla, gerçek zamanlı olarak karmaşık sayısal devrelerin tasarlanması, kontrol edilmesi, sisteme ait sonuçların gözlemlenmesi ve izlenmesini sağlayan ileri düzey eğitim teknolojileridir. Sunulan bu çalışmada, yurt dışı bağımlılığı ve yüksek maliyetleri azaltmayı hedefleyen uzaktan erişimle programlanabilir ve gözlemlenebilir yerli bir FPGA geliştirme kartı tasarlanmıştır. Tasarım, Xilinx XC3S50AN FPGA çipi ve ESP32 mikrodenetleyicisi kullanılarak gerçekleştirilmiştir. Sunulan tasarım ile kullanıcılar, HTML ve JavaScript tabanlı bir web arayüzü üzerinden FPGA çipini programlayarak canlı yayın paneli aracılığıyla tasarıma ait çıktıları ve sistem davranışlarını gerçek zamanlı gözlemleyebilme olanağı elde etmektedirler. Tasarımı yapılan Python tabanlı sistem altyapısı ile sisteme yüklenen bit dosyaları FPGA çipine aktarılarak hızlı bir sistem prototipleme imkânı elde edilmektedir. Tasarlanan sistemin test edilmesi amacı ile seçilen çeşitli uygulamalar başarılı bir şekilde çalıştırılarak sistemin kararlılığı ve esnekliği doğrulanmıştır. Ek olarak yönetici, laboratuvar ve kullanıcı yetkilendirme tipleri, farklı erişim seviyeleri sunularak sistem güvenliği sağlanmıştır. Sunulan bu çalışma ile uzaktan erişilebilir, güvenilir, kullanıcı dostu, donanım esnekliği ve kullanıcı arayüzlerinin sadeleştirilmesi üzerine odaklanan, eğitim ve endüstri kullanıcılarının ihtiyaçlarına daha etkin cevap veren yerli bir FPGA tabanlı uzaktan programlanabilir ve gözlemlenebilir devre kartı tasarımı başarılı bir şekilde gerçekleştirilmiştir.

References

  • Abanto, D., Carazas, V., Solis-Lastra, J., & Aramburu, C. (2022). Implementation of a Web-based Interface for Remote Access to a FPGA Board. Proceedings of the 2022 IEEE Engineering International Research Conference, EIRCON 2022, 1-4.
  • Aitor, V. M., Garcia-Zubia, J., Angulo, I., & Rodriguez-Gil, L. (2022). Toward Widespread Remote Laboratories: Evaluating the Effectiveness of a Replication-Based Architecture for Real-World Multiinstitutional Usage. IEEE Access, 10, 86298-86317.
  • Al Qassem, L. M., Stouraitis, T., Damiani, E., & Elfadel, I. M. (2020). A remote FPGA laboratory as a cloud microservice. Proceedings - IEEE International Symposium on Circuits and Systems, 2020-October.
  • Ali, S. A., Asif, R., Hina, S., & Fatima, Z. (2018). Cloud Based Remote FPGA Lab Platform: An Application of Internet of Things. Mehran University Research Journal of Engineering and Technology, 37(4), 535-544.
  • Alçın, M., Tuna, M., Erdoğmuş, P., & Koyuncu, İ. (2021). FPGA-based dual core TRNG design using ring and Runge-Kutta-Butcher based on chaotic oscillator. Chaos Theory and Applications, 3(1), 20-28.
  • Blochwitz, C., Grothe, P., Dreier, S., Aljnabi, W., Buchty, R., & Berekovic, M. (2022). RemEduLa-Remote Education Laboratory for FPGA Design Technology. Proceedings - IEEE International Symposium on Circuits and Systems, 2022-May, 1773-1777.
  • Choi, S., & Yoo, H. (2020). Fast Logic Function Extraction of LUT from Bitstream in Xilinx FPGA. Electronics 2020, Vol. 9, Page 1132, 9(7), 1132.
  • Çelik, K. (2021). Bulut Bilişim Teknolojileri. Bartın Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 12(24), 436-450.
  • Dağcı, B., & Koyuncu, İ. (2024). FPGA Tabanlı Uzaktan Laboratuvar Uygulamaları. Içinde 5. Bilsel International Sumela Scientific Researches Congress (609-622). Trabzon: Bilsel Yayınları.
  • De Jesús Navas-González, R., Oballe-Peinado, Ó., Castellanos-Ramos, J., Rosas-Cervantes, D., & Sánchez-Durán, J. A. (2022). Digital Electronics Practice Projects for an FPGA-based Remote Laboratory. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Devachandra, T., Singh, & Kumar, Dr. M. S. (2021). Design and Development of Bluetooth Based Home Automation System Using FPGA.
  • Dodi, A. E., Wahyudi, A. H., Kurdianto, Jatmiko, N. W., Lailiyul, M. F., & Widada, W. (2022). FPGA Displays Real-Time Video Camera on VGA Monitor. Proceedings - 11th Electrical Power, Electronics, Communications, Control, and Informatics Seminar, EECCIS 2022, 129-132.
  • Drutarovský, M., Šaliga, J., & Hroncová, I. (2009). Hardware Infrastructure Of Remote Laboratory For Experımental Testıng Of Fpga Based Complex Reconfıgurable Systems. Acta Electrotechnica et Informatica, 9(1), 44-50.
  • Emin, B., & Yaz, M. (2024). Digital implementation of chaotic systems using Nvidia Jetson AGX Orin and custom DAC converter. Chaos and Fractals, 1(1), 38-41.
  • Fernandes, A., Pereira, R. C., Sousa, J., Carvalho, P. F., Correia, M., Rodrigues, A. P., … Gonçalves, B. (2015). FPGA remote update for nuclear environments. 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, ANIMMA 2015.
  • Gao, T., Xu, X., Zhang, H., & Yang, H. (2015). A highly-integrated wireless configuration circuit for FPGA chip. Proceedings of the 14th International Symposium on Integrated Circuits, ISIC 2014, 260-263.
  • García-Orellana, C. J., MacIas-Macías, M., Abengózar-García, E., González-Velasco, H., Gallardo-Caballero, R., & García-Manso, A. (2022). Remote Laboratory Platform for Microcontroller Practices. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Gruwell, A., Zabriskie, P., & Wirthlin, M. (2016). High-speed FPGA configuration and testing through JTAG, 1-8.
  • Hanafi, A., & Karim, M. (2015). Embedded web server for real-time remote control and monitoring of an FPGA-based on-board computer system. 2015 Intelligent Systems and Computer Vision, ISCV 2015.
  • Hashemian, R., & Pearson, T. R. (2009). A low-cost server-client methodology for remote laboratory access for hardware design. Proceedings-Frontiers in Education Conference, FIE.
  • Hashemian, R., & Riddley, J. (2007). FPGA e-Lab, a technique to remote access a laboratory to design and test. Proceedings - MSE 2007: 2007 IEEE International Conference on Microelectronic Systems Education: Educating Systems Designers for the Global Economy and a Secure World, 139-140.
  • Hauck, S. (1998). The roles of FPGA’s in reprogrammable systems. Proceedings of the IEEE, 86(4), 615-638.
  • Hong, Z., & Chen, T. (2023). Research and design of video brightness extraction system based on FPGA embedded platform. 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information, ICETCI 2023, 349-353.
  • Indrusiak, L. S., Glesner, M., & Reis, R. (2007). On the evolution of remote laboratories for prototyping digital electronic systems. IEEE Transactions on Industrial Electronics, 54(6), 3069-3077.
  • Juncheng, M., Juan, G., Hong, Z., Zheng, W., & Shuang, X. (2021). Develop on real-time image processing system based on FPGA and RAM combined with PC or Cloud system.
  • Karagedik, N., Bal, S., & Yayla, A. (2023). Design and Testing of a Wireless Communication Enabled FPGA Development Board: A Comprehensive Education and Application Platform from IoT to Circuit Design. European Journal of Technique (EJT), 13(2), 123-129.
  • Karataş, F., Koyuncu, İ., Alçin, M., Tuna, M., Kocatepe Üniversitesi, A., Bilimleri Enstitüsü, F., … ve Enerji Bölümü, E. (2022). II. Derece AV Blok Aritmik EKG Sinyallerinin VHDL ile FPGA-Tabanlı Tasarımı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(6), 1334-1345.
  • Keskin, A., & Koyuncu, İ. (2023). Yeni Bir Fpga Geliştirme Kartı Tasarımı ve Uygulaması. Bilgisayar Bilimleri ve Teknolojileri Dergisi, 3(2), 46-55.
  • Kosan, T., Talla, J., & Janous, S. (2024). Online Education of Microcontroller Control of Electric Drives with FPGA Based HIL. 2024 IEEE 21st International Power Electronics and Motion Control Conference, PEMC 2024.
  • Mateos-Gil, R., De Toro, P. A. R., & Madarova, S. (2022). Remote Laboratory for System on Chip Design based on FPGAs. 15th International Conference of Technology, Learning and Teaching of Electronics, TAEE 2022 - Proceedings.
  • Monzo, C., Cobo, G., Morán, J. A., Santamaría, E., & García-Solórzano, D. (2021). Remote Laboratory for Online Engineering Education: The RLAB-UOC-FPGA Case Study. Electronics 2021, Vol. 10, Page 1072, 10(9), 1072.
  • Morgan, F., & Cawley, S. (2011). Enhancing learning of digital systems using a remote FPGA lab. 6th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip, ReCoSoC 2011 - Proceedings.
  • Óballe-Peinado, O., Castellanos-Ramos, J., Sánchez-Durán, J. A., & Trujillo-León, A. (2024). Remote Laboratory for Multiple FPGA-Based Development Platforms. 16th Congreso de Tecnologia, Aprendizaje y Ensenanza de la Electronica, TAEE 2024.
  • Oballe-Peinado, O., Castellanos-Ramos, J., Sanchez-Durqan, J. A., Navas-Gonzalez, R., Daza-Marquez, A., & Botin-Cordoba, J. A. (2020). FPGA-Based remote laboratory for digital electronics. Proceedings - 2020 14th Technologies Applied to Electronics Teaching Conference, TAEE 2020.
  • Oh, H., Nam, K., Jeon, S., Cho, Y., & Paek, Y. (2021). MeetGo: A trusted execution environment for remote applications on FPGA. IEEE Access, 9, 51313-51324.
  • Öǧe, O. C., Aydoǧan, A., & Durusu, D. (2019). A Comparison of Two Methods for FPGA Controlled Interface Board Tests. AUTOTESTCON (Proceedings), 2019-January.
  • Ravanasa, K., & Hashemian, R. (2014). VLab, a high speed multi-accesses parallel processing remote laboratory access for FPGA design technology. IEEE International Conference on Electro Information Technology, 377-381.
  • Rigo, C. A., Seman, L. O., Berejuck, M. D., & Bezerra, E. A. (2020). Printed Circuit Board Design Methodology for Embedded Systems Targeting Space Applications. IEEE Latin America Transactions, 18(2), 257-264.
  • Rodriguez-Gil, L., Orduna, P., Garcia-Zubia, J., Angulo, I., & Lopez-De-Ipina, D. (2014). Graphic technologies for virtual, remote and hybrid laboratories: WebLab-FPGA hybrid lab. Proceedings of 2014 11th International Conference on Remote Engineering and Virtual Instrumentation, REV 2014, 163-166.
  • Schwandt, A., & Winzker, M. (2019). Make it open - Improving usability and availability of an FPGA remote lab. IEEE Global Engineering Education Conference, EDUCON, April-2019, 232-236.
  • Seetharaman, R., Shivananth, I., Ganeshakumar, M., Anitha, D., Anandan, K., & Gayathri, S. (2022). Development of Crowd Management System using FPGA Circuits. Proceedings - International Conference on Augmented Intelligence and Sustainable Systems, ICAISS 2022.
  • Skhiri, R., Fresse, V., Jamont, J. P., Suffran, B., & Malek, J. (2019). From FPGA to Support Cloud to Cloud of FPGA: State of the Art. International Journal of Reconfigurable Computing, 2019(1), 8085461.
  • Taşdemir, M. F., Tuna, M., & Koyuncu, İ. (2025). FPGA-based chaotic oscillator designs and performance analysis. Chaos and Fractals, 2(1), 8-13.
  • Toyoda, Y., Koike, N., & Li, Y. (2016). An FPGA-based remote laboratory: Implementing semi-automatic experiments in the hybrid cloud. Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016, 24-29.
  • Ursutiu, D., Ghercioiu, M., Samoila1, C., & Cotfas, P. (2009). FPGA LabVIEW Programming, Monitoring and Remote Control. International Journal of Online and Biomedical Engineering (iJOE), 5(2), 34-41.
  • Wang, D., & Zhang, P. (2010). The technology research of remote automatic detection and fault diagnosis based on JTAG boundary scan. Procedia Engineering, 7, 270-274.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Cloud Computing, Software Architecture
Journal Section Research Articles
Authors

Buğra Dağcı 0000-0002-9606-5348

İsmail Koyuncu 0000-0003-4725-4879

Early Pub Date May 14, 2025
Publication Date July 22, 2025
Submission Date January 27, 2025
Acceptance Date April 25, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Dağcı, B., & Koyuncu, İ. (2025). FPGA Tabanlı Uzaktan Programlanabilir ve Gözlemlenebilir Geliştirme Kartı Tasarımı ve Uygulaması. Bilgisayar Bilimleri Ve Teknolojileri Dergisi, 6(1), 17-28. https://doi.org/10.54047/bibted.1628008