Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 117 - 127, 30.09.2023
https://doi.org/10.30516/bilgesci.1278745

Abstract

References

  • Blomberg, J., Persson, B., (2004). Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci, 50(4), 307–314. https://doi.org/10.1007/s10086-003-0566-2
  • Blomberg, J., Persson, B., Blomberg, A. (2005). Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Science and Technology, 39, 339-350. https://doi.org/10.1007/s00226-005-0290-8
  • Cloutier, A., Fang, C., Mariotti, N., Koubaa, A., Blanchet, P. (2008). Densification of wood veneers under the effect of heat, steam and pressure. In Proceedings of the 51st International Convention of Society of Wood Science and Technology.
  • Esteves, B., Pereira, H., (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404. https://doi.org/10.15376/biores.4.1.370-404
  • Esteves, B., Ribeiro, F., Cruz-Lopes, L., Ferreira, J., Domingos, I., Duarte, M., Nunes, L., (2017). Densification and heat treatment of maritime pine wood. Wood Research, 62(3), 373-388.
  • Fang, C. H., Cloutier, A., Blanchet, P., Koubaa, A., Mariotti, N., (2011). Densification of wood veneers combined with oil-heat treatment. Part I: Dimensional stability. BioResources, 6(1), 373-385.
  • Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P., (2012). Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 70(1), 155. https://doi.org/ 10.1007/s00107-011-0524-4
  • Fu, Q., Cloutier, A., Laghdir, A. (2016). Optimization of the thermo-hydromechanical (THM) process for sugar maple wood densification. BioResources, 11(4), 8844-8859. https://doi.org/10.15376/biores.11.4.8844-8859
  • Hajihassani, R., Mohebby, B., Najafi, S. K., Navi, P. (2018). Influence of combined hygro-thermo-mechanical treatment on technical characteristics of poplar wood. Maderas. Ciencia y tecnología, 20(1), 117-128. http://dx.doi.org/10.4067/S0718-221X2018005011001
  • ISO 13061 (2014). Wood - Determination of moisture content for physical and mechanical tests, International Organization for Standardization, Geneva, Switzerland.
  • ISO 13061-2 (2014). Wood - Determination of density for physical and mechanical tests, International Organization for Standardization, Geneva, Switzerland.
  • Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A., Kutnar, A. (2017). Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products, 75, 113-123. https://doi.org/10.1007/s00107-016-1052-z
  • Kaya, Z., Sofuoglu, S.D. (2023). Use of spinning roller in cylindrical densification; change in hardness, brightness, and surface roughness in solid wood (Larch) after densification. Furniture and Wooden Material Research Journal, 6 (1), 14-25. https://doi.org/10.33725/mamad.1260723
  • Kutnar A., Kamke F. A., Sernek M., (2009). Density profile and morphology of viscoelastic thermal compressed wood. Wood Science and Technology, 43(1-2), 57-68. https://doi.org/ 10.1007/s00226-008-0198-1
  • Kutnar, A., Šernek, M. (2007). Densification of wood. Zbornik gozdarstva in lesarstva, (82), 53-62.
  • Laine, K., Rautkari, L., R., Hughes, M., Kutnar, A., (2013). Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood and Wood Products, 71(1), 17-23. https://doi.org/10.1007/s00107-012-0647-2
  • Laine, K., Segerholm, K., Wålinder, M., Rautkari, L., Hughes, M. (2016). Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood science and technology, 50, 883-894. https://doi.org/10.1007/s00226-016-0835-z
  • Li, T., Cai, J. B., Zhou, D. G. (2013). Optimization of the Combined Modification Process of Thermo-Mechanical Densification and Heat Treatment on Chinese Fir Wood. BioResources, 8(4), 5279-5288
  • Li, T., Cai, J. B., Avramidis, S., Cheng, D. L., Wålinder, M. E., Zhou, D.G., (2017). Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung, 71(6), 515-520. https://doi.org/10.1515/hf-2016-0178
  • Lin, R.J.T.; Van Houts, J.; Bhattacharyya, D. (2006). Machinability investigation of medium-density fibreboard. Holzforschung, 60(1), 71–77. https://doi.org/10.1515/HF.2006.013
  • Malkocoglu, A. (2007). Machining properties and surface roughness of various wood species planed in different conditions. Build Environ, 42(7), 2562–2567. https://doi.org/10.1016/j.buildenv.2006.08.028
  • Malkocoglu, A., Ozdemir, T. (2006). The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey. J Mater Process Technol, 173(3), 315–320. https://doi.org/10.1016/j.jmatprotec.2005.09.031
  • Matthew Schwarzkopf (2021). Densified wood impregnated with phenol resin for reduced set-recovery. Wood Material Science & Engineering, 16(1), 35-41. https://doi.org/10.1080/17480272.2020.1729236
  • Neyses, B., Karlsson, O., Sandberg, D. (2020). The effect of ionic liquid and superbase pre-treatment on the spring-back, set-recovery and Brinell hardness of surface-densified Scots pine. Holzforschung, 74(3), 303-312. https://doi.org/10.1515/hf-2019-0158
  • Pelit, H., (2014). The effects of densification and heat treatment to finishing process with some technological properties of eastern beech and scots pine. PhD thesis, Gazi University, Ankara-Türkiye
  • Pelit, H., Sönmez, A., (2015). The Effect of Thermo-Mechanical Densification and Heat Treatment on Some Physical Properties of Eastern Beech (Fagus orientalis L.) wood. Duzce University Journal of Science and Technology, 3(1), 1-14.
  • Pelit, H., Sonmez, A., Budakci, M. (2014). Effects of ThermoWood process combined with thermo-mechanical densification on some physical properties of scots pine (Pinus sylvestris L.). BioResources, 9(3) 4552-4567. https://doi.org/10.15376/biores.9.3.4552-4567
  • Pelit, H., Sonmez, A., M. Budakci, M. (2015). Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources, 10(2), 3097-3111. https://doi.org/10.15376/biores.10.2.3097-3111
  • Pinkowski, G., Szymański, W., Krauss, A., Stefanowski, S. (2018). Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources, 13(3), 6952-6962. https://doi.org/10.15376/biores.13.3.6952-6962
  • Rautkari, L. (2012). Surface modification of solid wood using different techniques. Aalto University, Finland, PhD Thesis.
  • Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., (2010). Properties and set-recovery of surface densified Norway spruce and European beech. Wood Science and Technology, 44(4), 679-691. https://doi.org/10.1007/s00226-009-0291-0
  • Senol, S.; Budakci, M. (2019). Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials. BioResources, 14(4), 9611–9627. https://doi.org/10.15376/biores.14.4.9611-9627
  • Skyba, O., Schwarze, F. W. M. R., Niemz, P. (2009). Physical and mechanical properties of thermo-hygro-mechanically (THM) - densified wood. Wood Research, 54(2), 1-18.
  • Sofuoglu S.D., Tosun, M., Atilgan, A. (2023). Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing. Wood Material Science & Engineering, 18(3), 841-851. https://doi.org/10.1080/17480272.2022.2080586
  • Sofuoglu, S.D. (2022). Effect of thermo-mechanical densification on brightness and hardness in wood. Turkish Journal of Engineering Research and Education, 1(1), 15-19.
  • Tenorio, C., Moya, R., Navarro-Mora, A. (2021). Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas. Ciencia y tecnología, 23. https://doi.org/10.4067/S0718-221X2021000100416
  • Tosun, M., Sofuoglu, S.D. (2023). The use of an artificial neural network for predicting the machining characterizing of wood materials densified by compressing. Bilge International Journal of Science and Technology Research, 7(1), 55-62. https://doi.org/10.30516/bilgesci.1110376
  • Tosun, M., Sofuoglu, S.D. (2021). Studies of densification of wood material by compression. Furniture and Wooden Material Research Journal, 4(1), 91-102.
  • Tosun, M., Sofuoglu, S.D. (2023). Determination of processing characteristics of wood materials densified by compressing. Maderas-Cienc Tecnol, 25. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/5821
  • Welzbacher, C. R., Wehsener, J., Rapp, A. O., Haller, P. (2008). Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst.) in industrial scale–Dimensional stability and durability aspects. Holz als Roh-und Werkstoff, 1(66), 39-49. https://doi.org/ 10.1007/s00107-007-0198-0
  • Yahyaee, S. M. H., Dastoorian, F., Ghorbani, M., Zabihzadeh, S. M. (2022). Combined effect of organosolv delignification/polymerization on the set recovery of densified poplar wood. European Journal of Wood and Wood Products, 1-9. https://doi.org/10.1007/s00107-021-01756-5
  • Zhong, Z.W., Hiziroglu, S.; Chan, C.T.M. (2013). Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46(4), 1482–1487. https://doi.org/10.1016/j.measurement.2012.11. 041

Use of Spinning Roller in Cylindrical Densification; Spring back in Black Poplar, Larch and Cedar of Lebanon after Densification

Year 2023, Volume: 7 Issue: 2, 117 - 127, 30.09.2023
https://doi.org/10.30516/bilgesci.1278745

Abstract

Wood materials have been the solution to many needs throughout history due to their unique positive properties. By improving the properties of wood materials, their areas of use can be expanded and ensured that they are preferred. The densification process is one of the studies carried out to improve wood material properties. With densification, the physical and mechanical properties of the wood material are improved. There are many different methods used for densifying wood materials. While the densification process brings many positive properties to the wood material, an undesirable situation such as spring-back after the process is the negative side of the densification process. In this study, black poplar (Populus nigra L.), larch (Pinus nigra Arnold) and cedar of Lebanon (Cedrus libani A.Rich.) trees were shaped into cylinders on a lathe. After that, densification processes were carried out on the lathe machine using the spinning roller designed and manufactured for this purpose. Densification processes were carried out at 0.081, 0.121, and 0.202 mm/rev feed, at 200 and 400 rev/min, and 0.5 and 1 mm densification depths. The spring-back rates after densification in three different types of cylindrical wood materials were investigated. Theoretical and experimental spring-back amounts of test specimens whose surfaces were densified under different densification conditions were interpreted. When evaluated in general, the highest densification rate was obtained in black poplar wood species, 0.081 mm/rotate feed, 200 rpm spindle speed and 1 mm depth of densification. The lowest spring-back ratio was obtained in larch tree species, 0.121 mm/rotate feed, 400 rpm spindle speed and 1 mm depth of densification. The highest densification percentage was obtained in black poplar tree species, and the lowest in larch tree species. The lowest percentage of spring-back was obtained in the larch tree species and the highest in the black poplar tree species.

References

  • Blomberg, J., Persson, B., (2004). Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci, 50(4), 307–314. https://doi.org/10.1007/s10086-003-0566-2
  • Blomberg, J., Persson, B., Blomberg, A. (2005). Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Science and Technology, 39, 339-350. https://doi.org/10.1007/s00226-005-0290-8
  • Cloutier, A., Fang, C., Mariotti, N., Koubaa, A., Blanchet, P. (2008). Densification of wood veneers under the effect of heat, steam and pressure. In Proceedings of the 51st International Convention of Society of Wood Science and Technology.
  • Esteves, B., Pereira, H., (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370-404. https://doi.org/10.15376/biores.4.1.370-404
  • Esteves, B., Ribeiro, F., Cruz-Lopes, L., Ferreira, J., Domingos, I., Duarte, M., Nunes, L., (2017). Densification and heat treatment of maritime pine wood. Wood Research, 62(3), 373-388.
  • Fang, C. H., Cloutier, A., Blanchet, P., Koubaa, A., Mariotti, N., (2011). Densification of wood veneers combined with oil-heat treatment. Part I: Dimensional stability. BioResources, 6(1), 373-385.
  • Fang, C. H., Mariotti, N., Cloutier, A., Koubaa, A., Blanchet, P., (2012). Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 70(1), 155. https://doi.org/ 10.1007/s00107-011-0524-4
  • Fu, Q., Cloutier, A., Laghdir, A. (2016). Optimization of the thermo-hydromechanical (THM) process for sugar maple wood densification. BioResources, 11(4), 8844-8859. https://doi.org/10.15376/biores.11.4.8844-8859
  • Hajihassani, R., Mohebby, B., Najafi, S. K., Navi, P. (2018). Influence of combined hygro-thermo-mechanical treatment on technical characteristics of poplar wood. Maderas. Ciencia y tecnología, 20(1), 117-128. http://dx.doi.org/10.4067/S0718-221X2018005011001
  • ISO 13061 (2014). Wood - Determination of moisture content for physical and mechanical tests, International Organization for Standardization, Geneva, Switzerland.
  • ISO 13061-2 (2014). Wood - Determination of density for physical and mechanical tests, International Organization for Standardization, Geneva, Switzerland.
  • Kariz, M., Kuzman, M. K., Sernek, M., Hughes, M., Rautkari, L., Kamke, F. A., Kutnar, A. (2017). Influence of temperature of thermal treatment on surface densification of spruce. European Journal of Wood and Wood Products, 75, 113-123. https://doi.org/10.1007/s00107-016-1052-z
  • Kaya, Z., Sofuoglu, S.D. (2023). Use of spinning roller in cylindrical densification; change in hardness, brightness, and surface roughness in solid wood (Larch) after densification. Furniture and Wooden Material Research Journal, 6 (1), 14-25. https://doi.org/10.33725/mamad.1260723
  • Kutnar A., Kamke F. A., Sernek M., (2009). Density profile and morphology of viscoelastic thermal compressed wood. Wood Science and Technology, 43(1-2), 57-68. https://doi.org/ 10.1007/s00226-008-0198-1
  • Kutnar, A., Šernek, M. (2007). Densification of wood. Zbornik gozdarstva in lesarstva, (82), 53-62.
  • Laine, K., Rautkari, L., R., Hughes, M., Kutnar, A., (2013). Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood and Wood Products, 71(1), 17-23. https://doi.org/10.1007/s00107-012-0647-2
  • Laine, K., Segerholm, K., Wålinder, M., Rautkari, L., Hughes, M. (2016). Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood science and technology, 50, 883-894. https://doi.org/10.1007/s00226-016-0835-z
  • Li, T., Cai, J. B., Zhou, D. G. (2013). Optimization of the Combined Modification Process of Thermo-Mechanical Densification and Heat Treatment on Chinese Fir Wood. BioResources, 8(4), 5279-5288
  • Li, T., Cai, J. B., Avramidis, S., Cheng, D. L., Wålinder, M. E., Zhou, D.G., (2017). Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung, 71(6), 515-520. https://doi.org/10.1515/hf-2016-0178
  • Lin, R.J.T.; Van Houts, J.; Bhattacharyya, D. (2006). Machinability investigation of medium-density fibreboard. Holzforschung, 60(1), 71–77. https://doi.org/10.1515/HF.2006.013
  • Malkocoglu, A. (2007). Machining properties and surface roughness of various wood species planed in different conditions. Build Environ, 42(7), 2562–2567. https://doi.org/10.1016/j.buildenv.2006.08.028
  • Malkocoglu, A., Ozdemir, T. (2006). The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey. J Mater Process Technol, 173(3), 315–320. https://doi.org/10.1016/j.jmatprotec.2005.09.031
  • Matthew Schwarzkopf (2021). Densified wood impregnated with phenol resin for reduced set-recovery. Wood Material Science & Engineering, 16(1), 35-41. https://doi.org/10.1080/17480272.2020.1729236
  • Neyses, B., Karlsson, O., Sandberg, D. (2020). The effect of ionic liquid and superbase pre-treatment on the spring-back, set-recovery and Brinell hardness of surface-densified Scots pine. Holzforschung, 74(3), 303-312. https://doi.org/10.1515/hf-2019-0158
  • Pelit, H., (2014). The effects of densification and heat treatment to finishing process with some technological properties of eastern beech and scots pine. PhD thesis, Gazi University, Ankara-Türkiye
  • Pelit, H., Sönmez, A., (2015). The Effect of Thermo-Mechanical Densification and Heat Treatment on Some Physical Properties of Eastern Beech (Fagus orientalis L.) wood. Duzce University Journal of Science and Technology, 3(1), 1-14.
  • Pelit, H., Sonmez, A., Budakci, M. (2014). Effects of ThermoWood process combined with thermo-mechanical densification on some physical properties of scots pine (Pinus sylvestris L.). BioResources, 9(3) 4552-4567. https://doi.org/10.15376/biores.9.3.4552-4567
  • Pelit, H., Sonmez, A., M. Budakci, M. (2015). Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scots pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.). BioResources, 10(2), 3097-3111. https://doi.org/10.15376/biores.10.2.3097-3111
  • Pinkowski, G., Szymański, W., Krauss, A., Stefanowski, S. (2018). Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioResources, 13(3), 6952-6962. https://doi.org/10.15376/biores.13.3.6952-6962
  • Rautkari, L. (2012). Surface modification of solid wood using different techniques. Aalto University, Finland, PhD Thesis.
  • Rautkari, L., Properzi, M., Pichelin, F., Hughes, M., (2010). Properties and set-recovery of surface densified Norway spruce and European beech. Wood Science and Technology, 44(4), 679-691. https://doi.org/10.1007/s00226-009-0291-0
  • Senol, S.; Budakci, M. (2019). Effect of Thermo-Vibro-Mechanic® densification process on the gloss and hardness values of some wood materials. BioResources, 14(4), 9611–9627. https://doi.org/10.15376/biores.14.4.9611-9627
  • Skyba, O., Schwarze, F. W. M. R., Niemz, P. (2009). Physical and mechanical properties of thermo-hygro-mechanically (THM) - densified wood. Wood Research, 54(2), 1-18.
  • Sofuoglu S.D., Tosun, M., Atilgan, A. (2023). Determination of the machining characteristics of Uludağ fir (Abies nordmanniana Mattf.) densified by compressing. Wood Material Science & Engineering, 18(3), 841-851. https://doi.org/10.1080/17480272.2022.2080586
  • Sofuoglu, S.D. (2022). Effect of thermo-mechanical densification on brightness and hardness in wood. Turkish Journal of Engineering Research and Education, 1(1), 15-19.
  • Tenorio, C., Moya, R., Navarro-Mora, A. (2021). Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas. Ciencia y tecnología, 23. https://doi.org/10.4067/S0718-221X2021000100416
  • Tosun, M., Sofuoglu, S.D. (2023). The use of an artificial neural network for predicting the machining characterizing of wood materials densified by compressing. Bilge International Journal of Science and Technology Research, 7(1), 55-62. https://doi.org/10.30516/bilgesci.1110376
  • Tosun, M., Sofuoglu, S.D. (2021). Studies of densification of wood material by compression. Furniture and Wooden Material Research Journal, 4(1), 91-102.
  • Tosun, M., Sofuoglu, S.D. (2023). Determination of processing characteristics of wood materials densified by compressing. Maderas-Cienc Tecnol, 25. Retrieved from https://revistas.ubiobio.cl/index.php/MCT/article/view/5821
  • Welzbacher, C. R., Wehsener, J., Rapp, A. O., Haller, P. (2008). Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst.) in industrial scale–Dimensional stability and durability aspects. Holz als Roh-und Werkstoff, 1(66), 39-49. https://doi.org/ 10.1007/s00107-007-0198-0
  • Yahyaee, S. M. H., Dastoorian, F., Ghorbani, M., Zabihzadeh, S. M. (2022). Combined effect of organosolv delignification/polymerization on the set recovery of densified poplar wood. European Journal of Wood and Wood Products, 1-9. https://doi.org/10.1007/s00107-021-01756-5
  • Zhong, Z.W., Hiziroglu, S.; Chan, C.T.M. (2013). Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement, 46(4), 1482–1487. https://doi.org/10.1016/j.measurement.2012.11. 041
There are 42 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Zafer Kaya 0000-0002-5489-3997

Sait Dündar Sofuoğlu 0000-0002-1847-6985

Early Pub Date September 30, 2023
Publication Date September 30, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Kaya, Z., & Sofuoğlu, S. D. (2023). Use of Spinning Roller in Cylindrical Densification; Spring back in Black Poplar, Larch and Cedar of Lebanon after Densification. Bilge International Journal of Science and Technology Research, 7(2), 117-127. https://doi.org/10.30516/bilgesci.1278745