Review
BibTex RIS Cite

Unmanned Surface Vehicles Used for Water Quality Monitoring

Year 2025, Volume: 9 Issue: 2, 207 - 226, 30.09.2025
https://doi.org/10.30516/bilgesci.1771720

Abstract

Water is an essential element for sustaining life, making the continuous monitoring of aquatic resources a critical task. Advances in technology have paved the way for modern systems that enable water quality monitoring with lower labor requirements and reduced operational time. Unmanned Surface Vehicles (USVs), whether remotely operated or fully autonomous, serve as mobile platforms capable of collecting data from various locations within lakes, rivers, seas, and other water bodies. Their mobility and flexibility provide significant benefits, especially in large-scale or inaccessible regions. This paper reviews USV-based water quality monitoring systems and analyzes the hardware and software components used in their development. The study focuses on microcontrollers, storage units, propulsion and navigation techniques, sensor configurations, positioning systems, and energy management strategies. Furthermore, it examines the design and functionality of control station interfaces utilized for operating USVs and visualizing real-time environmental data.

References

  • Ang, Y. T., Ng, W. K., Chong, Y. W., Wan, J., Chee, S. Y., & Firth, L. B. (2022, July). An autonomous sailboat for environment monitoring. In 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 242-246). IEEE.
  • Ansari, S.M., Chattopadhyay, A., Yadav, A., Bardapurkar, S. (2022). Autonomous Vehicle for Polluted Water Quality Monitoring and Controlling Strategies. Stochastic Modeling & Applications, 26(3): 283-291.
  • Arko, S. R., Issa, R. B., Das, M., & Rahman, M. S. (2020, October). Autonomous surface vehicle for real-time monitoring of water bodies in Bangladesh. In Global Oceans 2020: Singapore–US Gulf Coast (pp. 1-7). IEEE.
  • Azzeri, M. N., Adnan, F. A., & Zain, M. M. (2015). Review of course keeping control system for unmanned surface vehicle. Jurnal Teknologi (Sciences & Engineering), 74(5).
  • Balbuena, J., Quiroz, D., Song, R., Bucknall, R., & Cuellar, F. (2017, September). Design and implementation of an USV for large bodies of fresh waters at the highlands of Peru. In OCEANS 2017-Anchorage (pp. 1-8). IEEE.
  • Bautista, A. J. C., Cruz, A. D. T., Adams, J. A. S., & Giron, E. L. C. (2022, April). Development of Arduino Based Autonomous Navigation Platform for Water Monitoring Boat Prototype. In 2022 8th International Conference on Control, Automation and Robotics (ICCAR) (pp. 237-241). IEEE.
  • Bayusari, I., Adawiyyah, N. A., Dwijayanti, S., Hikmarika, H., Husin, Z., & Suprapto, B. Y. (2021, October). Water quality monitoring system in autonomous underwater vehicle based on Internet of Things (IoT). In 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 328-334). IEEE.
  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable water resources management, 2(2), 161-173.
  • Cao, H., Guo, Z., Gu, Y., & Zhou, J. (2018, October). Design and implementation of unmanned surface vehicle for water quality monitoring. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1574-1577). IEEE.
  • Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water, 12(3), 681.
  • Chang, H. C., Hsu, Y. L., Hung, S. S., Ou, G. R., Wu, J. R., & Hsu, C. (2021). Autonomous water quality monitoring and water surface cleaning for unmanned surface vehicle. Sensors, 21(4), 1102.
  • de Lima, R. L. P., Boogaard, F. C., & de Graaf-van Dinther, R. E. (2020). Innovative water quality and ecology monitoring using underwater unmanned vehicles: Field applications, challenges and feedback from water managers. Water, 12(4), 1196.
  • Dsouza, V. L., Dsouza, S. F., Sarosh, M., Kukkilaya, S., Chilimbi, V., & Fernandes, S. R. (2021). Remotely controlled boat for water quality monitoring and sampling. Materials Today: Proceedings, 47, 2391-2400.
  • Dunbabin, M., Grinham, A., & Udy, J. (2009, December). An autonomous surface vehicle for water quality monitoring. In Australasian conference on robotics and automation (ACRA) (pp. 2-4). Sydney, Australia.
  • Duran, H., Yücel, F. (2021). Data collection systems for monitor water parameters using wireless sensor networks. International Integrated Pollution Prevention and Control Symposium, 1 - 03 April 2021, pp. 33-41 Karabük.
  • Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., & Silva, E. (2009, May). Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. In Oceans 2009-Europe (pp. 1-6). Ieee.
  • Gregory, C., & Vardy, A. (2020). microUSV: A low-cost platform for indoor marine swarm robotics research. HardwareX, 7, e00105.
  • Harrington, A.M., Kroninger, C. (2013). Characterization of small DC brushed and brushless motors. Army Research Lab Aberdeen Proving Ground MI) Vehicle Technology Directorate.
  • Idris, M.H., Kamarudin, M.A., Sahalan, M.I., Abidin, Z.B., Rashid, M.M. (2016). Design and development of an autonomous surface vessel for inland water depth monitoring. In 2016 International Conference on Computer and Communication Engineering (ICCCE) (pp. 177-182). IEEE.
  • Jo, W., Hoashi, Y., Aguilar, L. L. P., Postigo-Malaga, M., Garcia-Bravo, J. M., & Min, B. C. (2019). A low-cost and small USV platform for water quality monitoring. HardwareX, 6, e00076.
  • Kaizu, Y., Iio, M., Yamada, H., & Noguchi, N. (2011). Development of unmanned airboat for water-quality mapping. Biosystems engineering, 109(4), 338-347.
  • Khaled, D., Aly, H., Khaled, M., Mahmoud, N., Shabaan, S., & Abdellatif, A. (2021, August). Development of a sustainable unmanned surface vehicle (USV) for search and rescue operations. In the international undergraduate research conference (Vol. 5, No. 5, pp. 462-468). The Military Technical College.
  • Kimball, P., Bailey, J., Das, S., Geyer, R., Harrison, T., Kunz, C., ... & Singh, H. (2014, October). The WHOI Jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters. In 2014 IEEE/OES Autonomous Underwater Vehicles (AUV) (pp. 1-7). IEEE.
  • Kusko, A., & Peeran, S. M. (1988, October). Definition of the brushless DC motor. In Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting (pp. 20-22). IEEE.
  • Madeo, D., Pozzebon, A., Mocenni, C., & Bertoni, D. (2020). A low-cost unmanned surface vehicle for pervasive water quality monitoring. IEEE Transactions on Instrumentation and Measurement, 69(4), 1433-1444.
  • Melo, M., Mota, F., Albuquerque, V., & Alexandria, A. (2019). Development of a robotic airboat for online water quality monitoring in lakes. Robotics, 8(1), 19.
  • Mendoza-Chok, J., Luque, J. C. C., Salas-Cueva, N. F., Yanyachi, D., & Yanyachi, P. R. (2022). Hybrid control architecture of an unmanned surface vehicle used for water quality monitoring. IEEE Access, 10, 112789-112798.
  • Mohan, N. S., Shettar, M., & Bhat, R. (2017, December). Fabrication and investigation of epoxy resin based glass fiber-coconut fiber hybrid composite material. In International conference on mechanical and automobile engineering (ICMAE)(Vol. 21).
  • Mukta, M., Islam, S., Barman, S. D., Reza, A. W., & Khan, M. S. H. (2019, February). IoT based smart water quality monitoring system. In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS) (pp. 669-673). IEEE.
  • Neves, R., & Matos, A. C. (2013, September). Raspberry PI based stereo vision for small size ASVs. In 2013 OCEANS-San Diego (pp. 1-6). IEEE.
  • Prasad, A. N., Mamun, K. A., Islam, F. R., & Haqva, H. (2015, December). Smart water quality monitoring system. In 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) (pp. 1-6). IEEE.
  • Riley, C., Understanding the different types of boat hulls. (2021). Accessed Date: 23.03.2025, https://www.boatsafe.com/types-boat-hulls/
  • Sakama, S., Tanaka, Y., & Kamimura, A. (2022, January). Characteristics of hydraulic and electric servo motors. In Actuators (Vol. 11, No. 1, p. 11). MDPI.
  • Setiawan, J. D., Ihsan, M. S., Saputro, R., Munadi, M., Paryanto, P., & Alimi, S. (2022, February). Evaluation and development of wireless monitoring systems for an autonomous sailboat. In Journal of Physics: Conference Series (Vol. 2193, No. 1, p. 012050). IOP Publishing.
  • Shuo, J., Yonghui, Z., Wen, R., & Kebin, T. (2017, December). The unmanned autonomous cruise ship for water quality monitoring and sampling. In 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC) (pp. 700-703). IEEE.
  • Singh, R., Singh, P., & Yadav, K. (2014). Wireless communications enlargement: a review of advancement in technologies. International Journal of Current Engineering and Technology, 4(4), 2703-2710.
  • Siyang, S., & Kerdcharoen, T. (2016, June). Development of unmanned surface vehicle for smart water quality inspector. In 2016 13th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 1-5). IEEE.
  • Stateczny, A., & Burdziakowski, P. (2019). Universal autonomous control and management system for multipurpose unmanned surface vessel. Polish Maritime Research, 26, 30-39.
  • Surface Water Quality Regulation (SWQR), (2015). Accessed Date: 23.03.2025. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=16806&MevzuatTur=7&MevzuatTertip=5
  • Tran, H. D., Nguyen, N. T., Cao, T. N. T., Gia, L. X., Ho, K., Nguyen, D. D., ... & Truong, V. N. (2024). Unmanned surface vehicle for automatic water quality monitoring. In E3S Web of Conferences (Vol. 496, p. 03005). EDP Sciences.
  • Wang, J., Gu, W., & Zhu, J. (2009, January). Design of an autonomous surface vehicle used for marine environment monitoring. In 2009 International Conference on Advanced Computer Control (pp. 405-409). IEEE.
  • Water Science School (WSS), Temperature and Water (2018). Accessed Date: 23.03.2025. https://www.usgs.gov/special-topics/water-science-school/science/temperature-and-water
  • Water Science School (WSS) Turbidity and Water (2018). Accessed Date: 23.03.2025. https://www.usgs.gov/special-topics/water-science-school/science/turbidity-and-water
  • Xing, A., Fang, J., Gao, M., & Zhang, C. (2020, August). Design of an unmanned boat system for floating garbage salvage and water quality monitoring based on onenet. In Journal of Physics: Conference Series (Vol. 1607, No. 1, p. 012062). IOP Publishing.
  • Zhu, X., Kong, S., Yan, K., Yue, Y. (2019). 4G-based remote manual control for unmanned surface vehicles. 3rd International Conference on Computer Science and Application Engineering, 22 - 24 October 2019, pp. 1–6, Sanya.
  • Zhu, X., Kong, S., Yan, K., & Yue, Y. (2019, October). 4g-based remote manual control for unmanned surface vehicles. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering (pp. 1-6).

Su Kalitesinin İzlenmesi İçin Kullanılan İnsansız Su Üstü Araçları

Year 2025, Volume: 9 Issue: 2, 207 - 226, 30.09.2025
https://doi.org/10.30516/bilgesci.1771720

Abstract

Su, yaşamın sürdürülmesi için önemli bir unsurdur ve su kaynaklarının sürekli izlenmesini kritik bir görev haline getirir. Teknolojideki ilerlemeler, daha düşük işçilik gereksinimleri ve daha kısa işletme süresi ile su kalitesinin izlenmesini sağlayan modern sistemlerin yolunu açmıştır. İnsansız Yüzey Araçları (USV'ler), ister uzaktan kumandalı ister tamamen otonom olsun, göller, nehirler, denizler ve diğer su kütleleri içindeki çeşitli konumlardan veri toplayabilen mobil platformlar olarak hizmet eder. Hareketlilikleri ve esneklikleri, özellikle büyük ölçekli veya erişilemeyen bölgelerde önemli faydalar sağlar. Bu makale, USV tabanlı su kalitesi izleme sistemlerini gözden geçirmekte ve bunların geliştirilmesinde kullanılan donanım ve yazılım bileşenlerini analiz etmektedir. Çalışma, mikrodenetleyiciler, depolama birimleri, tahrik ve navigasyon teknikleri, sensör konfigürasyonları, konumlandırma sistemleri ve enerji yönetimi stratejilerine odaklanmaktadır. Ayrıca, USV'leri çalıştırmak ve gerçek zamanlı çevresel verileri görselleştirmek için kullanılan kontrol istasyonu arayüzlerinin tasarımını ve işlevselliğini inceler.

References

  • Ang, Y. T., Ng, W. K., Chong, Y. W., Wan, J., Chee, S. Y., & Firth, L. B. (2022, July). An autonomous sailboat for environment monitoring. In 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 242-246). IEEE.
  • Ansari, S.M., Chattopadhyay, A., Yadav, A., Bardapurkar, S. (2022). Autonomous Vehicle for Polluted Water Quality Monitoring and Controlling Strategies. Stochastic Modeling & Applications, 26(3): 283-291.
  • Arko, S. R., Issa, R. B., Das, M., & Rahman, M. S. (2020, October). Autonomous surface vehicle for real-time monitoring of water bodies in Bangladesh. In Global Oceans 2020: Singapore–US Gulf Coast (pp. 1-7). IEEE.
  • Azzeri, M. N., Adnan, F. A., & Zain, M. M. (2015). Review of course keeping control system for unmanned surface vehicle. Jurnal Teknologi (Sciences & Engineering), 74(5).
  • Balbuena, J., Quiroz, D., Song, R., Bucknall, R., & Cuellar, F. (2017, September). Design and implementation of an USV for large bodies of fresh waters at the highlands of Peru. In OCEANS 2017-Anchorage (pp. 1-8). IEEE.
  • Bautista, A. J. C., Cruz, A. D. T., Adams, J. A. S., & Giron, E. L. C. (2022, April). Development of Arduino Based Autonomous Navigation Platform for Water Monitoring Boat Prototype. In 2022 8th International Conference on Control, Automation and Robotics (ICCAR) (pp. 237-241). IEEE.
  • Bayusari, I., Adawiyyah, N. A., Dwijayanti, S., Hikmarika, H., Husin, Z., & Suprapto, B. Y. (2021, October). Water quality monitoring system in autonomous underwater vehicle based on Internet of Things (IoT). In 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 328-334). IEEE.
  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable water resources management, 2(2), 161-173.
  • Cao, H., Guo, Z., Gu, Y., & Zhou, J. (2018, October). Design and implementation of unmanned surface vehicle for water quality monitoring. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1574-1577). IEEE.
  • Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water, 12(3), 681.
  • Chang, H. C., Hsu, Y. L., Hung, S. S., Ou, G. R., Wu, J. R., & Hsu, C. (2021). Autonomous water quality monitoring and water surface cleaning for unmanned surface vehicle. Sensors, 21(4), 1102.
  • de Lima, R. L. P., Boogaard, F. C., & de Graaf-van Dinther, R. E. (2020). Innovative water quality and ecology monitoring using underwater unmanned vehicles: Field applications, challenges and feedback from water managers. Water, 12(4), 1196.
  • Dsouza, V. L., Dsouza, S. F., Sarosh, M., Kukkilaya, S., Chilimbi, V., & Fernandes, S. R. (2021). Remotely controlled boat for water quality monitoring and sampling. Materials Today: Proceedings, 47, 2391-2400.
  • Dunbabin, M., Grinham, A., & Udy, J. (2009, December). An autonomous surface vehicle for water quality monitoring. In Australasian conference on robotics and automation (ACRA) (pp. 2-4). Sydney, Australia.
  • Duran, H., Yücel, F. (2021). Data collection systems for monitor water parameters using wireless sensor networks. International Integrated Pollution Prevention and Control Symposium, 1 - 03 April 2021, pp. 33-41 Karabük.
  • Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., & Silva, E. (2009, May). Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. In Oceans 2009-Europe (pp. 1-6). Ieee.
  • Gregory, C., & Vardy, A. (2020). microUSV: A low-cost platform for indoor marine swarm robotics research. HardwareX, 7, e00105.
  • Harrington, A.M., Kroninger, C. (2013). Characterization of small DC brushed and brushless motors. Army Research Lab Aberdeen Proving Ground MI) Vehicle Technology Directorate.
  • Idris, M.H., Kamarudin, M.A., Sahalan, M.I., Abidin, Z.B., Rashid, M.M. (2016). Design and development of an autonomous surface vessel for inland water depth monitoring. In 2016 International Conference on Computer and Communication Engineering (ICCCE) (pp. 177-182). IEEE.
  • Jo, W., Hoashi, Y., Aguilar, L. L. P., Postigo-Malaga, M., Garcia-Bravo, J. M., & Min, B. C. (2019). A low-cost and small USV platform for water quality monitoring. HardwareX, 6, e00076.
  • Kaizu, Y., Iio, M., Yamada, H., & Noguchi, N. (2011). Development of unmanned airboat for water-quality mapping. Biosystems engineering, 109(4), 338-347.
  • Khaled, D., Aly, H., Khaled, M., Mahmoud, N., Shabaan, S., & Abdellatif, A. (2021, August). Development of a sustainable unmanned surface vehicle (USV) for search and rescue operations. In the international undergraduate research conference (Vol. 5, No. 5, pp. 462-468). The Military Technical College.
  • Kimball, P., Bailey, J., Das, S., Geyer, R., Harrison, T., Kunz, C., ... & Singh, H. (2014, October). The WHOI Jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters. In 2014 IEEE/OES Autonomous Underwater Vehicles (AUV) (pp. 1-7). IEEE.
  • Kusko, A., & Peeran, S. M. (1988, October). Definition of the brushless DC motor. In Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting (pp. 20-22). IEEE.
  • Madeo, D., Pozzebon, A., Mocenni, C., & Bertoni, D. (2020). A low-cost unmanned surface vehicle for pervasive water quality monitoring. IEEE Transactions on Instrumentation and Measurement, 69(4), 1433-1444.
  • Melo, M., Mota, F., Albuquerque, V., & Alexandria, A. (2019). Development of a robotic airboat for online water quality monitoring in lakes. Robotics, 8(1), 19.
  • Mendoza-Chok, J., Luque, J. C. C., Salas-Cueva, N. F., Yanyachi, D., & Yanyachi, P. R. (2022). Hybrid control architecture of an unmanned surface vehicle used for water quality monitoring. IEEE Access, 10, 112789-112798.
  • Mohan, N. S., Shettar, M., & Bhat, R. (2017, December). Fabrication and investigation of epoxy resin based glass fiber-coconut fiber hybrid composite material. In International conference on mechanical and automobile engineering (ICMAE)(Vol. 21).
  • Mukta, M., Islam, S., Barman, S. D., Reza, A. W., & Khan, M. S. H. (2019, February). IoT based smart water quality monitoring system. In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS) (pp. 669-673). IEEE.
  • Neves, R., & Matos, A. C. (2013, September). Raspberry PI based stereo vision for small size ASVs. In 2013 OCEANS-San Diego (pp. 1-6). IEEE.
  • Prasad, A. N., Mamun, K. A., Islam, F. R., & Haqva, H. (2015, December). Smart water quality monitoring system. In 2015 2nd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) (pp. 1-6). IEEE.
  • Riley, C., Understanding the different types of boat hulls. (2021). Accessed Date: 23.03.2025, https://www.boatsafe.com/types-boat-hulls/
  • Sakama, S., Tanaka, Y., & Kamimura, A. (2022, January). Characteristics of hydraulic and electric servo motors. In Actuators (Vol. 11, No. 1, p. 11). MDPI.
  • Setiawan, J. D., Ihsan, M. S., Saputro, R., Munadi, M., Paryanto, P., & Alimi, S. (2022, February). Evaluation and development of wireless monitoring systems for an autonomous sailboat. In Journal of Physics: Conference Series (Vol. 2193, No. 1, p. 012050). IOP Publishing.
  • Shuo, J., Yonghui, Z., Wen, R., & Kebin, T. (2017, December). The unmanned autonomous cruise ship for water quality monitoring and sampling. In 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC) (pp. 700-703). IEEE.
  • Singh, R., Singh, P., & Yadav, K. (2014). Wireless communications enlargement: a review of advancement in technologies. International Journal of Current Engineering and Technology, 4(4), 2703-2710.
  • Siyang, S., & Kerdcharoen, T. (2016, June). Development of unmanned surface vehicle for smart water quality inspector. In 2016 13th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON) (pp. 1-5). IEEE.
  • Stateczny, A., & Burdziakowski, P. (2019). Universal autonomous control and management system for multipurpose unmanned surface vessel. Polish Maritime Research, 26, 30-39.
  • Surface Water Quality Regulation (SWQR), (2015). Accessed Date: 23.03.2025. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=16806&MevzuatTur=7&MevzuatTertip=5
  • Tran, H. D., Nguyen, N. T., Cao, T. N. T., Gia, L. X., Ho, K., Nguyen, D. D., ... & Truong, V. N. (2024). Unmanned surface vehicle for automatic water quality monitoring. In E3S Web of Conferences (Vol. 496, p. 03005). EDP Sciences.
  • Wang, J., Gu, W., & Zhu, J. (2009, January). Design of an autonomous surface vehicle used for marine environment monitoring. In 2009 International Conference on Advanced Computer Control (pp. 405-409). IEEE.
  • Water Science School (WSS), Temperature and Water (2018). Accessed Date: 23.03.2025. https://www.usgs.gov/special-topics/water-science-school/science/temperature-and-water
  • Water Science School (WSS) Turbidity and Water (2018). Accessed Date: 23.03.2025. https://www.usgs.gov/special-topics/water-science-school/science/turbidity-and-water
  • Xing, A., Fang, J., Gao, M., & Zhang, C. (2020, August). Design of an unmanned boat system for floating garbage salvage and water quality monitoring based on onenet. In Journal of Physics: Conference Series (Vol. 1607, No. 1, p. 012062). IOP Publishing.
  • Zhu, X., Kong, S., Yan, K., Yue, Y. (2019). 4G-based remote manual control for unmanned surface vehicles. 3rd International Conference on Computer Science and Application Engineering, 22 - 24 October 2019, pp. 1–6, Sanya.
  • Zhu, X., Kong, S., Yan, K., & Yue, Y. (2019, October). 4g-based remote manual control for unmanned surface vehicles. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering (pp. 1-6).
There are 46 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Review
Authors

Hüseyin Duran 0000-0002-9006-9540

Namık Kemal Sönmez 0000-0001-6882-0599

Publication Date September 30, 2025
Submission Date August 25, 2025
Acceptance Date September 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Duran, H., & Sönmez, N. K. (2025). Unmanned Surface Vehicles Used for Water Quality Monitoring. Bilge International Journal of Science and Technology Research, 9(2), 207-226. https://doi.org/10.30516/bilgesci.1771720