Research Article
BibTex RIS Cite

Türkiye-Kazakistan Bankalarının Çok Kriterli Karar Verme Yöntemleriyle Karşılaştırılması ve Yapay Sinir Ağlarıyla Analizi

Year 2026, Issue: Erken Görünüm
https://doi.org/10.12995/bilig.8402

Abstract

Bankaların mevcut mali tablo verileri ve bu verilerin kullanılması sonucunda oluşturulan finansal analizler, artan rekabet koşullarında bankaların performans derecesini belirlemek konusunda önem arz etmektedir. Bu çalışmanın amacı, Borsa İstanbul (BIST) 50 endeksinde işlem gören bankaların ve Kazakistan Borsasında yer alan 5 bankanın 2013-2023 yıllarındaki finansal performanslarının Çok Kriterli Karar Verme (ÇKKV) yöntemlerinden Standart Deviation (SD) ve Combinative Distance-based Assessment (CODAS) yöntemleri kullanarak değerlendirmesidir. Bu amaçla söz konusu sıralama
sonuçlarına etki eden faktörlerin etki dereceleri Weka programı kullanılarak belirlenmiş ve rastgele seçilen bir bankanın 2024-2025 yılsonu finansal performans sıralama tahmini yapılmıştır. SD ve CODAS yöntemlerinin uygulanması sonucunda elde edilen sıralamalara bakıldığında her iki ülke bankaları arasında M&T Bankın çalışmaya konu olan yıllarda genel olarak ilk sıralarda yer aldığı görülmüştür. Yapay sinir ağları yöntemine göre elde edilen sonuçlar değerlendirildiğinde CODAS değerlendirme sıralamalarında, her iki ülkede de toplam yükümlülük verilerinin daha etkili olduğu anlaşılmıştır.

References

  • Abdel-Basset, Mohamed, et al. “Efficient MCDM Model for Evaluating the Performance of Commercial Banks: A Case Study.” Computers, Materials & Continua, vol. 67, no. 3, 2021, pp. 2729-2746.
  • Abilov, Nurdaulet. The Role of Banking and Credit in Business Cycle Fluctuations in Kazakhstan. NAC Analytica Working Paper, no. 8, 2021.
  • Allen, Franklin, Elena Carletti, and Xian Gu. “The Roles of Banks in Financial Systems.” The Oxford Handbook of Banking, 3rd ed., edited by Allen N. Berger, Philip Molyneux, and John O. Wilson, Oxford UP, 2019.
  • ARDFM. “Second Tier Banks.” 05 October 2024, https://www.gov.kz/memleket/entities/ardfm/press/article/details/1814?lang=en.
  • Arora, Rohit, and Suman Suman. “Comparative Analysis of Classification Algorithms on Different Datasets Using WEKA.” International Journal of Computer Applications, vol. 54, no. 13, 2012.
  • Aydın, Alev Dilek, and Şeyma Çavdar. “Prediction of Financial Crisis with Artificial Neural Network: An Empirical Analysis on Turkey.” International Journal of Financial Research, vol. 6, no. 4, 2015, pp. 36-45.
  • Beheshtinia, Mohammad Ali, and Sedighe Omidi. “A Hybrid MCDM Approach for Performance Evaluation in the Banking Industry.” Kybernetes, vol. 46, no. 8, 2017, pp. 1386-1407.
  • Chen, Shenglei, et al. “A Novel Selective Naïve Bayes Algorithm.” Knowledge-Based Systems, vol. 192, 2020, p. 105361.
  • Çakır, Ergin, and Melih Can. “Best-Worst Yöntemine Dayalı ARAS Yöntemi ile Dış Kaynak Kullanım Tercihinin Belirlenmesi: Turizm Sektöründe Bir Uygulama.” Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 1273-1300.
  • Di Franco, Giovanni, and Michele Santurro. “Machine Learning, Artificial Neural Networks and Social Research.” Quality & Quantity, vol. 55, no. 3, 2021, pp. 1007-1025.
  • Diakoulaki, Dimitra et al. “Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method.” Computers & Operations Research, vol. 22, no. 7, 1995, pp. 763-770.
  • Ecer, Fatih. Çok Kriterli Karar Verme Geçmişten Günümüze Kapsamlı Bir Yaklaşım. Seçkin Yayıncılık, 2020.
  • Grekousis, George. “Artificial Neural Networks and Deep Learning in Urban
  • Geography: A Systematic Review and Meta-Analysis.” Computers, Environment and Urban Systems, vol. 74, 2019, pp. 244-256.
  • Ijadi Maghsoodi, Abteen et al. “Dam Construction Material Selection by Implementing the Integrated SWARA-CODAS Approach with Target-Based Attributes.” Archives of Civil and Mechanical Engineering, vol. 19, no. 4, 2019, pp. 1194-1210.
  • İbrahimov, Mehman. Azerbaycan Bankacılık Sektöründe Waspas Yönetimi İle Performans Analizi. Dokuz Eylül Üniversitesi, 2021.
  • Karadağ Ak, Özlem, et al. “Türki Cumhuriyetlerin Banka Finansal Performanslarının Analizi.” Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, vol. 25, no. 1, 2024, pp. 51-68.
  • Kaveh, Ali. Applications of Artificial Neural Networks and Machine Learning in Civil Engineering. Studies in Computational Intelligence, vol. 1168, 2024.
  • Keeney, Ralph L. “Making Better Decision Makers.” Decision Analysis, vol. 1, no. 4, 2004, pp. 193-204.
  • Keshavarz Ghorabaee, Mehdi, et al. “A New Combinative Distance-Based Assessment (CODAS) Method for Multi-Criteria Decision-Making.” Economic Computation & Economic Cybernetics Studies & Research, vol. 50, no. 3, 2016, pp. 25-44.
  • Köroğlu, Çağrı, and Mehmet Anbarcı. “Kamusal ve Özel Sermayeli Bankaların Finansal Performanslarının CRITIC ve EDAS Yöntemleri ile Değerlendirilmesi.” Finans ve Ekonomi Politika ve Anlayışlarının Uygulamadaki Sonuçları, edited by Şenay Karabulut, Ekin Yayınevi, 2022, pp. 385-392.
  • Lokanan, Mark. “Predicting Money Laundering Using Machine Learning and Artificial Neural Networks Algorithms in Banks.” Journal of Applied Security Research, vol. 19, no. 1, 2024, pp. 20-44.
  • Marjanović, Ivana, and Žarko Popović. “MCDM Approach for Assessment of Financial Performance of Serbian Banks.” Business Performance and Financial Institutions in Europe: Business Models and Value Creation Across European Industries, 2020, pp. 71-90.
  • Mishkin, Frederic S. The Economics of Money, Banking, and Financial Markets. Pearson Education, 2007.
  • Montesinos López, O. A., et al. “Fundamentals of Artificial Neural Networks and Deep Learning.” Multivariate Statistical Machine Learning Methods for Genomic Prediction, Springer International Publishing, 2022, pp. 379-425.
  • Naghshpour, Shahdad, and Hugh L. Davis. “The Impact of Commercial Banking Development on Economic Growth: A Principal Component Analysis of Association Between Banking Industry and Economic Growth in Eastern Europe.” International Journal of Monetary Economics and Finance, vol. 11, no. 6, 2018, pp. 525-542.
  • Nguyen, Phuc Tran. “The Impact of Banking Sector Development on Economic Growth: The Case of Vietnam’s Transitional Economy.” Journal of Risk and Financial Management, vol. 15, no. 8, 2022, p. 358.
  • Ofodile, Onyeka Ofodile., et al. “Digital Banking Regulations: A Comparative Review Between Nigeria and the USA.” Finance & Accounting Research Journal, vol. 6, no. 3, 2024, pp. 347-371.
  • Okur, Mustafa Reha, and Melih Tütüncüoğlu. “Reaching Financial Service Customers in the 21st Century: A Conceptual Overview.” 5th International Conference on Contemporary Marketing Issues ICCMI, June 21-23, 2017, Thessaloniki, Greece, 2017, p. 522.
  • Özbek, Aşır. Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2nd ed., Seçkin Yayıncılık, 2019.
  • Parmaksız, Salih, and Ozan Özdemir. “Çok Kriterli Karar Verme Tekniklerinin Bankacılık Oran Analizinde Kullanılması Üzerine Bir Araştırma.” Journal of Banking and Financial Research, vol 8, no. 2, 2021, pp. 65-93.
  • Sharma, Meenakshi, and Akanksha Choubey. “Green Banking Initiatives: A Qualitative Study on Indian Banking Sector.” Environment, Development and Sustainability, vol. 24, no. 1, 2022, pp. 293-319.
  • Süzülmüş, Seval, and Emre Yakut. “Critic Temelli Promethee ve Edas Teknikleriyle Bankaların Finansal Performanslarının Belirlenerek Karşılaştırılması.” MANAS Sosyal Araştırmalar Dergisi, vol 13, no. 1, 2024, pp. 218-239.
  • Şahin, Mehmet. Güncel ve Uygulamalı Çok Kriterli Karar Verme Yöntemleri. 2nd ed., Nobel Bilimsel, 2022.
  • Tanınmış Yücememiş, Başak, et al. “Türkiye-Özbekistan-Kazakistan Ekonomik İlişkileri ve Bankacılık Sistemi.” Finansal Araştırmalar ve Çalışmalar Dergisi, vol. 9, no. 17, 2017, pp. 161-203.
  • Yang, Guangyu Robert., and Xiao-Jing Wang. “Artificial Neural Networks for Neuroscientists: A Primer.” Neuron, vol. 107, no. 6, 2020, pp. 1048-1070.
  • Yegnanarayana, Byadav. Artificial Neural Networks. PHI Learning Pvt. Ltd., 2009.
  • Yetiz, Filiz. “Bankacılığın Doğuşu ve Türk Bankacılık Sistemi.” Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 9, no. 2, 2016, pp. 107-117.
  • Zavadskas, Edmundas Kazimieras, and Zenonas Turskis. “A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision-Making.” Technological and Economic Development of Economy, vol. 16, no. 2, 2010, pp. 159-172.
  • Zorić, Bilal Alisa. “Predicting Customer Churn in Banking Industry Using Neural Networks”. Interdisciplinary Description of Complex Systems: INDECS, vol. 14, no. 2, 2016, pp. 116-124.

Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks

Year 2026, Issue: Erken Görünüm
https://doi.org/10.12995/bilig.8402

Abstract

The financial statement data of banks and the economic analyses generated using these data play a crucial role in assessing the performance rankings of banks amid intensifying competitive
conditions. This study aims to evaluate the economic performance of banks listed in the Borsa Istanbul (BIST) 50 index and five banks listed on the Kazakhstan Stock Exchange for the period 2013–2023, employing Multi-Criteria Decision-Making (MCDM) methods such as Standard Deviation (SD) and Combinative Distance-based Assessment (CODAS). The significance levels of factors affecting ranking outcomes were determined using the Weka program, and a financial performance ranking forecast for 2024–2025 was conducted for a randomly selected bank.
Upon examining the rankings obtained from SD and CODAS methods, M&T Bank consistently ranked among the top banks across both countries throughout the study period. Additionally, an analysis based on artificial neural networks revealed that, within CODAS ranking evaluations, total liability data proved to be the most influential determinant in both Turkish and Kazakh banking sectors.

References

  • Abdel-Basset, Mohamed, et al. “Efficient MCDM Model for Evaluating the Performance of Commercial Banks: A Case Study.” Computers, Materials & Continua, vol. 67, no. 3, 2021, pp. 2729-2746.
  • Abilov, Nurdaulet. The Role of Banking and Credit in Business Cycle Fluctuations in Kazakhstan. NAC Analytica Working Paper, no. 8, 2021.
  • Allen, Franklin, Elena Carletti, and Xian Gu. “The Roles of Banks in Financial Systems.” The Oxford Handbook of Banking, 3rd ed., edited by Allen N. Berger, Philip Molyneux, and John O. Wilson, Oxford UP, 2019.
  • ARDFM. “Second Tier Banks.” 05 October 2024, https://www.gov.kz/memleket/entities/ardfm/press/article/details/1814?lang=en.
  • Arora, Rohit, and Suman Suman. “Comparative Analysis of Classification Algorithms on Different Datasets Using WEKA.” International Journal of Computer Applications, vol. 54, no. 13, 2012.
  • Aydın, Alev Dilek, and Şeyma Çavdar. “Prediction of Financial Crisis with Artificial Neural Network: An Empirical Analysis on Turkey.” International Journal of Financial Research, vol. 6, no. 4, 2015, pp. 36-45.
  • Beheshtinia, Mohammad Ali, and Sedighe Omidi. “A Hybrid MCDM Approach for Performance Evaluation in the Banking Industry.” Kybernetes, vol. 46, no. 8, 2017, pp. 1386-1407.
  • Chen, Shenglei, et al. “A Novel Selective Naïve Bayes Algorithm.” Knowledge-Based Systems, vol. 192, 2020, p. 105361.
  • Çakır, Ergin, and Melih Can. “Best-Worst Yöntemine Dayalı ARAS Yöntemi ile Dış Kaynak Kullanım Tercihinin Belirlenmesi: Turizm Sektöründe Bir Uygulama.” Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 1273-1300.
  • Di Franco, Giovanni, and Michele Santurro. “Machine Learning, Artificial Neural Networks and Social Research.” Quality & Quantity, vol. 55, no. 3, 2021, pp. 1007-1025.
  • Diakoulaki, Dimitra et al. “Determining Objective Weights in Multiple Criteria Problems: The CRITIC Method.” Computers & Operations Research, vol. 22, no. 7, 1995, pp. 763-770.
  • Ecer, Fatih. Çok Kriterli Karar Verme Geçmişten Günümüze Kapsamlı Bir Yaklaşım. Seçkin Yayıncılık, 2020.
  • Grekousis, George. “Artificial Neural Networks and Deep Learning in Urban
  • Geography: A Systematic Review and Meta-Analysis.” Computers, Environment and Urban Systems, vol. 74, 2019, pp. 244-256.
  • Ijadi Maghsoodi, Abteen et al. “Dam Construction Material Selection by Implementing the Integrated SWARA-CODAS Approach with Target-Based Attributes.” Archives of Civil and Mechanical Engineering, vol. 19, no. 4, 2019, pp. 1194-1210.
  • İbrahimov, Mehman. Azerbaycan Bankacılık Sektöründe Waspas Yönetimi İle Performans Analizi. Dokuz Eylül Üniversitesi, 2021.
  • Karadağ Ak, Özlem, et al. “Türki Cumhuriyetlerin Banka Finansal Performanslarının Analizi.” Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, vol. 25, no. 1, 2024, pp. 51-68.
  • Kaveh, Ali. Applications of Artificial Neural Networks and Machine Learning in Civil Engineering. Studies in Computational Intelligence, vol. 1168, 2024.
  • Keeney, Ralph L. “Making Better Decision Makers.” Decision Analysis, vol. 1, no. 4, 2004, pp. 193-204.
  • Keshavarz Ghorabaee, Mehdi, et al. “A New Combinative Distance-Based Assessment (CODAS) Method for Multi-Criteria Decision-Making.” Economic Computation & Economic Cybernetics Studies & Research, vol. 50, no. 3, 2016, pp. 25-44.
  • Köroğlu, Çağrı, and Mehmet Anbarcı. “Kamusal ve Özel Sermayeli Bankaların Finansal Performanslarının CRITIC ve EDAS Yöntemleri ile Değerlendirilmesi.” Finans ve Ekonomi Politika ve Anlayışlarının Uygulamadaki Sonuçları, edited by Şenay Karabulut, Ekin Yayınevi, 2022, pp. 385-392.
  • Lokanan, Mark. “Predicting Money Laundering Using Machine Learning and Artificial Neural Networks Algorithms in Banks.” Journal of Applied Security Research, vol. 19, no. 1, 2024, pp. 20-44.
  • Marjanović, Ivana, and Žarko Popović. “MCDM Approach for Assessment of Financial Performance of Serbian Banks.” Business Performance and Financial Institutions in Europe: Business Models and Value Creation Across European Industries, 2020, pp. 71-90.
  • Mishkin, Frederic S. The Economics of Money, Banking, and Financial Markets. Pearson Education, 2007.
  • Montesinos López, O. A., et al. “Fundamentals of Artificial Neural Networks and Deep Learning.” Multivariate Statistical Machine Learning Methods for Genomic Prediction, Springer International Publishing, 2022, pp. 379-425.
  • Naghshpour, Shahdad, and Hugh L. Davis. “The Impact of Commercial Banking Development on Economic Growth: A Principal Component Analysis of Association Between Banking Industry and Economic Growth in Eastern Europe.” International Journal of Monetary Economics and Finance, vol. 11, no. 6, 2018, pp. 525-542.
  • Nguyen, Phuc Tran. “The Impact of Banking Sector Development on Economic Growth: The Case of Vietnam’s Transitional Economy.” Journal of Risk and Financial Management, vol. 15, no. 8, 2022, p. 358.
  • Ofodile, Onyeka Ofodile., et al. “Digital Banking Regulations: A Comparative Review Between Nigeria and the USA.” Finance & Accounting Research Journal, vol. 6, no. 3, 2024, pp. 347-371.
  • Okur, Mustafa Reha, and Melih Tütüncüoğlu. “Reaching Financial Service Customers in the 21st Century: A Conceptual Overview.” 5th International Conference on Contemporary Marketing Issues ICCMI, June 21-23, 2017, Thessaloniki, Greece, 2017, p. 522.
  • Özbek, Aşır. Çok Kriterli Karar Verme Yöntemleri ve Excel ile Problem Çözümü. 2nd ed., Seçkin Yayıncılık, 2019.
  • Parmaksız, Salih, and Ozan Özdemir. “Çok Kriterli Karar Verme Tekniklerinin Bankacılık Oran Analizinde Kullanılması Üzerine Bir Araştırma.” Journal of Banking and Financial Research, vol 8, no. 2, 2021, pp. 65-93.
  • Sharma, Meenakshi, and Akanksha Choubey. “Green Banking Initiatives: A Qualitative Study on Indian Banking Sector.” Environment, Development and Sustainability, vol. 24, no. 1, 2022, pp. 293-319.
  • Süzülmüş, Seval, and Emre Yakut. “Critic Temelli Promethee ve Edas Teknikleriyle Bankaların Finansal Performanslarının Belirlenerek Karşılaştırılması.” MANAS Sosyal Araştırmalar Dergisi, vol 13, no. 1, 2024, pp. 218-239.
  • Şahin, Mehmet. Güncel ve Uygulamalı Çok Kriterli Karar Verme Yöntemleri. 2nd ed., Nobel Bilimsel, 2022.
  • Tanınmış Yücememiş, Başak, et al. “Türkiye-Özbekistan-Kazakistan Ekonomik İlişkileri ve Bankacılık Sistemi.” Finansal Araştırmalar ve Çalışmalar Dergisi, vol. 9, no. 17, 2017, pp. 161-203.
  • Yang, Guangyu Robert., and Xiao-Jing Wang. “Artificial Neural Networks for Neuroscientists: A Primer.” Neuron, vol. 107, no. 6, 2020, pp. 1048-1070.
  • Yegnanarayana, Byadav. Artificial Neural Networks. PHI Learning Pvt. Ltd., 2009.
  • Yetiz, Filiz. “Bankacılığın Doğuşu ve Türk Bankacılık Sistemi.” Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 9, no. 2, 2016, pp. 107-117.
  • Zavadskas, Edmundas Kazimieras, and Zenonas Turskis. “A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision-Making.” Technological and Economic Development of Economy, vol. 16, no. 2, 2010, pp. 159-172.
  • Zorić, Bilal Alisa. “Predicting Customer Churn in Banking Industry Using Neural Networks”. Interdisciplinary Description of Complex Systems: INDECS, vol. 14, no. 2, 2016, pp. 116-124.
There are 40 citations in total.

Details

Primary Language English
Subjects Monetary-Banking, Studies of the Turkic World
Journal Section Articles
Authors

Çağrı Köroğlu 0000-0003-4073-1847

Ali Büyükmert 0000-0002-8330-8742

Mehmet Anbarcı 0000-0002-1203-6620

Eren Temel 0000-0003-1938-4836

Early Pub Date May 28, 2025
Publication Date
Submission Date October 8, 2024
Acceptance Date April 25, 2025
Published in Issue Year 2026 Issue: Erken Görünüm

Cite

APA Köroğlu, Ç., Büyükmert, A., Anbarcı, M., Temel, E. (2025). Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks. Bilig(Erken Görünüm). https://doi.org/10.12995/bilig.8402
AMA Köroğlu Ç, Büyükmert A, Anbarcı M, Temel E. Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks. Bilig. May 2025;(Erken Görünüm). doi:10.12995/bilig.8402
Chicago Köroğlu, Çağrı, Ali Büyükmert, Mehmet Anbarcı, and Eren Temel. “Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis With Artificial Neural Networks”. Bilig, no. Erken Görünüm (May 2025). https://doi.org/10.12995/bilig.8402.
EndNote Köroğlu Ç, Büyükmert A, Anbarcı M, Temel E (May 1, 2025) Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks. Bilig Erken Görünüm
IEEE Ç. Köroğlu, A. Büyükmert, M. Anbarcı, and E. Temel, “Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks”, Bilig, no. Erken Görünüm, May 2025, doi: 10.12995/bilig.8402.
ISNAD Köroğlu, Çağrı et al. “Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis With Artificial Neural Networks”. Bilig Erken Görünüm (May 2025). https://doi.org/10.12995/bilig.8402.
JAMA Köroğlu Ç, Büyükmert A, Anbarcı M, Temel E. Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks. Bilig. 2025. doi:10.12995/bilig.8402.
MLA Köroğlu, Çağrı et al. “Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis With Artificial Neural Networks”. Bilig, no. Erken Görünüm, 2025, doi:10.12995/bilig.8402.
Vancouver Köroğlu Ç, Büyükmert A, Anbarcı M, Temel E. Comparison of Turkish and Kazakh Banks Using Multi-Criteria Decision-Making Methods and Analysis with Artificial Neural Networks. Bilig. 2025(Erken Görünüm).

Ahmet Yesevi University Board of Trustees