Research Article
BibTex RIS Cite

Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method

Year 2022, , 51 - 59, 31.12.2022
https://doi.org/10.47897/bilmes.1163980

Abstract

Aluminum is a metal that is frequently used in the industry and stands out with its lightness. The development of Aluminum, which has a good strength/weight ratio as a result of various alloying and production techniques, continues. While this process is being done, different production methods and nanotechnological material contribution draw attention. When the literature was scanned, it was seen that nano Boron Nitride additive made improvements to aluminum in terms of strength, hardness, weight, machinability and cost reduction. In this review, the hardness, yield stress and tensile stress properties of Nano Boron Nitride, which is added to Aluminum with different production methods and different percentages, were investigated.

References

  • [1] Başer, T. A. (2012). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı, Mühendis ve Makina, 53, 51-58.
  • [2] Türkiye Metalurji Mühendisleri Odası (2004), ‘’Alüminyum raporu’’, Metalurji Dergisi, 137, 2-4
  • [3] TMMOB Maden Mühendisleri Odası, (1970, Mayıs). '’Bor Nedir’’, Madencilik Dergisi. Cilt IX, sayı. 2-3, Sf. 9-29.
  • [4] Karakılıç, M., (2011). Ulusal bor araştırma enstitüsü (BOREN) ve bor projeleri. BOREN, Endüstriyel ilişkiler grup koordinatörlüğü, Bor Çalıştayı Sunumları, Ankara. (Websayfası:http://www.ssm.gov.tr/anasayfa/hizli/duyurular/etkinlikler/konferanslar/documents/borcalistayi/boren%20sunumu.pdf) (Erişim tarihi: 12.01.2022)
  • [5] Angın, M.H., & Aydın, S. (2003). Bor nitrür ön fizibilite etüdü.,(Websayfası: http://www.etimaden.gov.tr) (Erişim tarihi :13.01.2022)
  • [6] Özdemir Köklü, M. (2012). Bor içerikli nanomalzeme üretim olanaklarının araştırılması, Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü.
  • [7] Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924-4939.
  • [8] Şenel, M. C., Gürbüz, M., & Koç, E. (2018). Alüminyum-grafen kompozit yapılarda çekme dayanımının, aşınma direncinin ve mikroyapının incelenmesi, SETSCI Conference Indexing System, 144-149
  • [9] Loganathan, A., Sharma, A., Rudolf, C., Zhang, C., Nautiyal, P., Suwas, S., & Agarwal, A. (2017). In-situ deformation mechanism and orientation effects in sintered 2D boron nitride nanosheets. Materials Science and Engineering: A, 708, 440-450.
  • [10] Ramesh, K. T. (2009). Nanomaterials. In Nanomaterials. Springer, Boston, MA., A.B.D., 1-20.
  • [11] Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron nitride nanotubes. science, 269(5226), 966-967.
  • [12] Hwang, H.J., Barakat, N.A.M., Muzafar A. Kanjwal, M.A., Sheikh, F.A., & Hak Yong Kim, H.Y. (2010). Boron nitride nanofibers by the electrospinning technique. Macromolecular Research, 18 (6), 551-557.
  • [13] Liu, B., Gu, Y., Ji, Y., Zheng, G., Ma, F., Wang, J.,Wu, F., Long, F.,Zhou, B., Chen, C. (2021). Thin-walled boron nitride micron square tube decorated by nanosheets: Preparation, characterization and adsorption property. Ceramics International, 47(10), 14115-14123.
  • [14] Pakdel, A., Zhi, C., Bando, Y., & Golberg, D. (2012). Low-dimensional boron nitride nanomaterials. Materials Today, 15(6), 256-265.
  • [15] Lourie, O. R., Jones, C. R., Bartlett, B. M., Gibbons, P. C., Ruoff, R. S., & Buhro, W. E. (2000). CVD growth of boron nitride nanotubes. Chemistry of Materials, 12(7), 1808-1810.
  • [16] Qiu, Y., Yu, J., Yin, J., Tan, C., Zhou, X., Bai, X., & Wang, E. (2009). Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers. Nanotechnology, 20, 3456-3463
  • [17] Vardar, Kadir , Aydemir, Fırat , Özdemir, Durmuş , Topuz, Mustafa , Kolay, Burakcan , Yıldırım, Yusuf , Bilici, Zehra , Baydoğrul, Mustafa Uhud , Yağan, Yunus Emre , Kaya, Bünyamin , Tandoğan, Ali , Gürer, Ethem Yiğit . "Design of Electrical Test Device for Automotive Industry". International Scientific and Vocational Studies Journal 5 / 2 (Aralık 2021): 154-163
  • [18] Ceylan, Ç., Duran, B., Koçyiğit, O., Koçer, C., Doğan, B., Hacaloğlu, T., Şengönül, M.C., Kaftanoğlu, B., (2021). Havacılık endüstrisinde kullanılmak üzere alüminyum malzemelerin korozyon direncinin arttırılması amacıyla yüzey kaplaması geliştirilmesi. Makina Tasarım ve İmalat Dergisi, 19(2), 96-105.
  • [19] Poovazhagan, L., Kalaichelvan, K., & Sornakumar, T. (2016). Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites. Materials and Manufacturing Processes, 31(10), 1275-1285.
  • [20] Altuner, S., & Keleşoğlu, E. (2012). Prouduction of Y2O3 coated Al2O3 reinforced aluminium matrix composites and the coating of interface effects over wettability properties. Journal of Engineering and Natural Sciences, Mühendislik ve Fen Bilimleri Dergisi, Sigma, 30, 252-258.
  • [21] Shenglong, Y.S.D., & Shoujie, D.A.I. (2005). A glimpse at the development and application of aluminum alloys in aviation industry, Materials Review 2, 022.
  • [22] Duan, Z., Li, C., Ding, W., Zhang, Y., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Mao, C., Li, N.H., Kumar, M.G., Said, Z., Depnath, S., Jamil, M., Ali, H. M. (2021). milling force model for aviation aluminum alloy: Academic insight and perspective analysis, Chinese Journal of Mechanical Engineering, 34(1), 1-35.
  • [23] Pillari, L. K., Umasankar, V., Elamathi, P., & Chandrasekar, G. (2016). Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Materials Today: Proceedings, 3(6), 2018-2026.
  • [24] Keidar, M., & Beilis, I. I., Plasma engineering: Application in aerospace, Nanotechnology and Bionanotechnology (Elsevier, Oxford, UK, 2013).
  • [25] Pakdel, A., Bando, Y., & Golberg, D. (2014). Nano boron nitride flatland. Chemical Society Reviews, 43(3), 934-959.
  • [26] Guerra, V., Wan, C., & McNally, T. (2019). Thermal conductivity of 2D nanostructured boron nitride (BN) and its composites with polymers. Progress in Materials Science, 100, 170-186. [27] Loeblein, M., Tsang, S. H., Pawlik, M., Phua, E. J. R., Yong, H., Zhang, X. W., Gan, L.C., Teo, E. H. T. (2017). High-density 3D-boron nitride and 3D-graphene for highperformance nano–thermal interface material. ACS Nano, 11(2), 2033-2044.
  • [28] Salles, V., Bernard, S., Brioude, A., Cornu, D., & Miele, P. (2010). A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. Nanoscale, 2, 215–217
  • [29] Karaca, B., & Çavdar, U. (2014). ‘’Saf ve bor karbür takviyeli alüminyum tozlarının ultra yüksek frekanslı indüksiyon jeneratörü ile sinterlenmesi,’’ Mühendis ve Makina, 55, 59-64.
  • [30] Tajzad, I., & Ghasali, E. (2020). Production methods of CNT-reinforced Al matrix composites: a review. Journal of Composites and Compounds, 2(2), 1-9.
  • [31] Nayim, S. T. I., Hasan, M. Z., Seth, P. P., Gupta, P., Thakur, S., Kumar, D., & Jamwal, A. (2020). Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Materials Today: Proceedings, 21, 1421-1424.
  • [32] Yamaguchi, M., Meng, F., Firestein, K., Tsuchiya, K., & Golberg, D. (2014). Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Materials Science and Engineering: A, 604, 9-17.
  • [33] Nautiyal, P., Rudolf, C., Loganathan, A., Zhang, C., Boesl, B., & Agarwal, A. (2016). Directionally aligned ultra‐long boron nitride nanotube induced strengthening of aluminum‐based sandwich composite. Advanced Engineering Materials, 18(10), 1747-1754.
  • [34] Antillon, M., Nautiyal, P., Loganathan, A., Boesl, B., & Agarwal, A. (2018). Strengthening in boron nitride nanotube reinforced aluminum composites prepared by roll bonding. Advanced Engineering Materials, 20(8), 1800122.
  • [35] Yonetken, A., & Erol, A. (2018). Production and characterization of Al-BN composite materials using by powder metallurgy. Agronomy Research, 16(Special Issue I), 1289-1294.
  • [36] Meignanamoorthy, M., & Ravichandran, M. (2018). Synthesis of metal matrix composites via powder metallurgy route: a review. Mechanics and Mechanical Engineering, 22(1), 65-76.
  • [37] Huo, S. H., Qian, M., Schaffer, G. B., & Crossin, E. (2011). Aluminium powder metallurgy. In Fundamentals of Aluminium Metallurgy, Woodhead Publishing. pp. 655-701.
  • [38] Gökçe, A., Fındık, F., & Kurt, A. O. (2017). Alüminyum ve alaşımlarının toz metalurjisi işlemleri. Mühendis ve Makina, 58(686), 21-47.
  • [39] Kemaloğlu, Ş. (2009). Termal ara yüzey malzemesi olarak kullanılabilecek polimer/bor nitrür mikro ve nano kompozitlerinin üretim teknolojilerinin araştırılması, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2009, 259402.
  • [40] Akay, A. (2015). Bor nitrürün nano tabakalarına ayrılmasının incelenmesi, Doktora Tezi, Anadolu Üniversitesi, Eskişehir.
  • [41] Özmen, D. (2008). ‘’Production and characterization of boron nitride nanotubes,’’ Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [42] Aydın, H. (2018). Nanoyapılı hegzagonal bor nitrür üretimi ve karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 269-275.
  • [43] Korucu, Y. (2010). ‘’Nanotüp çeşitleri ve uygulamaları,’’ Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • [44] Şengönül, M., Durgun, İ., Dökmetaş, N., Kalkan, H., & Kaftanoğlu, B. (2018). Bor nitrür kaplamanın, kaynak çapaklarının metal aparat yüzeylerine yapışma davranışlarına etkisi. Makina Tasarım ve İmalat Dergisi, 14(1), 23-30.
  • [45] Çavdar, U., Atik, E., (2011). Geleneksel ve hızlı sinterleme yöntemleri, CBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 1 (15): 1-10.
  • [46] Benko, E., Morgiel, J., & Czeppe, T. (1997). BN sintered with Al: Microstructure and hardness. Ceramics international, 23(1), 89-91.
  • [47] Cavaliere, P., Sadeghi, B., Shamanian, M., & Ashrafizadeh, F. (2019). Al-based nanocomposites produced via spark plasma sintering: effect of processing route and reinforcing phases, Spark Plasma Sintering of Materials, Springer, 161–190.
  • [48] Karaoğlanlı, A. C., Türk, A., Özdemir, İ. (2014). Seramik esaslı plazma sprey kaplamaların oksidasyon davranışlarının incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14(3), 401-405.
  • [49] Arpaçay, D. (2009). Magnezyum AZ80 alaşımında yüksek basınç burulma işleminin mikroyapı ve mekanik özelliklere etkisi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [50] Lahiri, D., Singh, V., Li, L. H., Xing, T., Seal, S., Chen, Y., & Agarwal, A. (2012). Insight into reactions and interface between boron nitride nanotube and aluminum. Journal of Materials Research, 27(21), 2760-2770.
  • [51] Firestein, K. L., Corthay, S., Steinman, A. E., Matveev, A. T., Kovalskii, A. M., Sukhorukova, I. V., Golberg, D., Shtansky, D. V. (2017). High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Materials Science and Engineering: A, 681, 1-9.
  • [52] Lahiri, D., Hadjikhani, A., Zhang, C., Xing, T., Li, L. H., Chen, Y., & Agarwal, A. (2013). Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Materials Science and Engineering: A, 574, 149-156.
  • [53] Aydoğan, İ.K. (2007). Haddeleme prosesinde malzeme karakteristiğindeki değişimlerin incelenmesi ve modellenmesi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [54] Bisht, A., Kumar, V., Li, L. H., Chen, Y., Agarwal, A., & Lahiri, D. (2018). Effect of warm rolling and annealing on the mechanical properties of aluminum composite reinforced with boron nitride nanotubes. Materials Science and Engineering: A, 710, 366-373.
  • [55] Öztürk, C. (2004). B4C-TiB2-WC seramiklerinin sıcak pres tekniği ile üretimi, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [56] Mısırlı, C. (2011). 5083 kalite alüminyum alaşımının homojenize edilerek sertlik değerlerinin ve mikroyapılarının incelenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü.

Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method

Year 2022, , 51 - 59, 31.12.2022
https://doi.org/10.47897/bilmes.1163980

Abstract

Aluminum is a metal that is frequently used in the industry and stands out with its lightness. The development of Aluminum, which has a good strength/weight ratio as a result of various alloying and production techniques, continues. While this process is being done, different production methods and nanotechnological material contribution draw attention. When the literature was scanned, it was seen that nano Boron Nitride additive made improvements to aluminum in terms of strength, hardness, weight, machinability and cost reduction. In this review, the hardness, yield stress and tensile stress properties of Nano Boron Nitride, which is added to Aluminum with different production methods and different percentages, were investigated.

References

  • [1] Başer, T. A. (2012). Alüminyum alaşımları ve otomotiv endüstrisinde kullanımı, Mühendis ve Makina, 53, 51-58.
  • [2] Türkiye Metalurji Mühendisleri Odası (2004), ‘’Alüminyum raporu’’, Metalurji Dergisi, 137, 2-4
  • [3] TMMOB Maden Mühendisleri Odası, (1970, Mayıs). '’Bor Nedir’’, Madencilik Dergisi. Cilt IX, sayı. 2-3, Sf. 9-29.
  • [4] Karakılıç, M., (2011). Ulusal bor araştırma enstitüsü (BOREN) ve bor projeleri. BOREN, Endüstriyel ilişkiler grup koordinatörlüğü, Bor Çalıştayı Sunumları, Ankara. (Websayfası:http://www.ssm.gov.tr/anasayfa/hizli/duyurular/etkinlikler/konferanslar/documents/borcalistayi/boren%20sunumu.pdf) (Erişim tarihi: 12.01.2022)
  • [5] Angın, M.H., & Aydın, S. (2003). Bor nitrür ön fizibilite etüdü.,(Websayfası: http://www.etimaden.gov.tr) (Erişim tarihi :13.01.2022)
  • [6] Özdemir Köklü, M. (2012). Bor içerikli nanomalzeme üretim olanaklarının araştırılması, Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü.
  • [7] Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924-4939.
  • [8] Şenel, M. C., Gürbüz, M., & Koç, E. (2018). Alüminyum-grafen kompozit yapılarda çekme dayanımının, aşınma direncinin ve mikroyapının incelenmesi, SETSCI Conference Indexing System, 144-149
  • [9] Loganathan, A., Sharma, A., Rudolf, C., Zhang, C., Nautiyal, P., Suwas, S., & Agarwal, A. (2017). In-situ deformation mechanism and orientation effects in sintered 2D boron nitride nanosheets. Materials Science and Engineering: A, 708, 440-450.
  • [10] Ramesh, K. T. (2009). Nanomaterials. In Nanomaterials. Springer, Boston, MA., A.B.D., 1-20.
  • [11] Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., & Zettl, A. (1995). Boron nitride nanotubes. science, 269(5226), 966-967.
  • [12] Hwang, H.J., Barakat, N.A.M., Muzafar A. Kanjwal, M.A., Sheikh, F.A., & Hak Yong Kim, H.Y. (2010). Boron nitride nanofibers by the electrospinning technique. Macromolecular Research, 18 (6), 551-557.
  • [13] Liu, B., Gu, Y., Ji, Y., Zheng, G., Ma, F., Wang, J.,Wu, F., Long, F.,Zhou, B., Chen, C. (2021). Thin-walled boron nitride micron square tube decorated by nanosheets: Preparation, characterization and adsorption property. Ceramics International, 47(10), 14115-14123.
  • [14] Pakdel, A., Zhi, C., Bando, Y., & Golberg, D. (2012). Low-dimensional boron nitride nanomaterials. Materials Today, 15(6), 256-265.
  • [15] Lourie, O. R., Jones, C. R., Bartlett, B. M., Gibbons, P. C., Ruoff, R. S., & Buhro, W. E. (2000). CVD growth of boron nitride nanotubes. Chemistry of Materials, 12(7), 1808-1810.
  • [16] Qiu, Y., Yu, J., Yin, J., Tan, C., Zhou, X., Bai, X., & Wang, E. (2009). Synthesis of continuous boron nitride nanofibers by solution coating electrospun template fibers. Nanotechnology, 20, 3456-3463
  • [17] Vardar, Kadir , Aydemir, Fırat , Özdemir, Durmuş , Topuz, Mustafa , Kolay, Burakcan , Yıldırım, Yusuf , Bilici, Zehra , Baydoğrul, Mustafa Uhud , Yağan, Yunus Emre , Kaya, Bünyamin , Tandoğan, Ali , Gürer, Ethem Yiğit . "Design of Electrical Test Device for Automotive Industry". International Scientific and Vocational Studies Journal 5 / 2 (Aralık 2021): 154-163
  • [18] Ceylan, Ç., Duran, B., Koçyiğit, O., Koçer, C., Doğan, B., Hacaloğlu, T., Şengönül, M.C., Kaftanoğlu, B., (2021). Havacılık endüstrisinde kullanılmak üzere alüminyum malzemelerin korozyon direncinin arttırılması amacıyla yüzey kaplaması geliştirilmesi. Makina Tasarım ve İmalat Dergisi, 19(2), 96-105.
  • [19] Poovazhagan, L., Kalaichelvan, K., & Sornakumar, T. (2016). Processing and performance characteristics of aluminum-nano boron carbide metal matrix nanocomposites. Materials and Manufacturing Processes, 31(10), 1275-1285.
  • [20] Altuner, S., & Keleşoğlu, E. (2012). Prouduction of Y2O3 coated Al2O3 reinforced aluminium matrix composites and the coating of interface effects over wettability properties. Journal of Engineering and Natural Sciences, Mühendislik ve Fen Bilimleri Dergisi, Sigma, 30, 252-258.
  • [21] Shenglong, Y.S.D., & Shoujie, D.A.I. (2005). A glimpse at the development and application of aluminum alloys in aviation industry, Materials Review 2, 022.
  • [22] Duan, Z., Li, C., Ding, W., Zhang, Y., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Mao, C., Li, N.H., Kumar, M.G., Said, Z., Depnath, S., Jamil, M., Ali, H. M. (2021). milling force model for aviation aluminum alloy: Academic insight and perspective analysis, Chinese Journal of Mechanical Engineering, 34(1), 1-35.
  • [23] Pillari, L. K., Umasankar, V., Elamathi, P., & Chandrasekar, G. (2016). Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Materials Today: Proceedings, 3(6), 2018-2026.
  • [24] Keidar, M., & Beilis, I. I., Plasma engineering: Application in aerospace, Nanotechnology and Bionanotechnology (Elsevier, Oxford, UK, 2013).
  • [25] Pakdel, A., Bando, Y., & Golberg, D. (2014). Nano boron nitride flatland. Chemical Society Reviews, 43(3), 934-959.
  • [26] Guerra, V., Wan, C., & McNally, T. (2019). Thermal conductivity of 2D nanostructured boron nitride (BN) and its composites with polymers. Progress in Materials Science, 100, 170-186. [27] Loeblein, M., Tsang, S. H., Pawlik, M., Phua, E. J. R., Yong, H., Zhang, X. W., Gan, L.C., Teo, E. H. T. (2017). High-density 3D-boron nitride and 3D-graphene for highperformance nano–thermal interface material. ACS Nano, 11(2), 2033-2044.
  • [28] Salles, V., Bernard, S., Brioude, A., Cornu, D., & Miele, P. (2010). A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. Nanoscale, 2, 215–217
  • [29] Karaca, B., & Çavdar, U. (2014). ‘’Saf ve bor karbür takviyeli alüminyum tozlarının ultra yüksek frekanslı indüksiyon jeneratörü ile sinterlenmesi,’’ Mühendis ve Makina, 55, 59-64.
  • [30] Tajzad, I., & Ghasali, E. (2020). Production methods of CNT-reinforced Al matrix composites: a review. Journal of Composites and Compounds, 2(2), 1-9.
  • [31] Nayim, S. T. I., Hasan, M. Z., Seth, P. P., Gupta, P., Thakur, S., Kumar, D., & Jamwal, A. (2020). Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Materials Today: Proceedings, 21, 1421-1424.
  • [32] Yamaguchi, M., Meng, F., Firestein, K., Tsuchiya, K., & Golberg, D. (2014). Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Materials Science and Engineering: A, 604, 9-17.
  • [33] Nautiyal, P., Rudolf, C., Loganathan, A., Zhang, C., Boesl, B., & Agarwal, A. (2016). Directionally aligned ultra‐long boron nitride nanotube induced strengthening of aluminum‐based sandwich composite. Advanced Engineering Materials, 18(10), 1747-1754.
  • [34] Antillon, M., Nautiyal, P., Loganathan, A., Boesl, B., & Agarwal, A. (2018). Strengthening in boron nitride nanotube reinforced aluminum composites prepared by roll bonding. Advanced Engineering Materials, 20(8), 1800122.
  • [35] Yonetken, A., & Erol, A. (2018). Production and characterization of Al-BN composite materials using by powder metallurgy. Agronomy Research, 16(Special Issue I), 1289-1294.
  • [36] Meignanamoorthy, M., & Ravichandran, M. (2018). Synthesis of metal matrix composites via powder metallurgy route: a review. Mechanics and Mechanical Engineering, 22(1), 65-76.
  • [37] Huo, S. H., Qian, M., Schaffer, G. B., & Crossin, E. (2011). Aluminium powder metallurgy. In Fundamentals of Aluminium Metallurgy, Woodhead Publishing. pp. 655-701.
  • [38] Gökçe, A., Fındık, F., & Kurt, A. O. (2017). Alüminyum ve alaşımlarının toz metalurjisi işlemleri. Mühendis ve Makina, 58(686), 21-47.
  • [39] Kemaloğlu, Ş. (2009). Termal ara yüzey malzemesi olarak kullanılabilecek polimer/bor nitrür mikro ve nano kompozitlerinin üretim teknolojilerinin araştırılması, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2009, 259402.
  • [40] Akay, A. (2015). Bor nitrürün nano tabakalarına ayrılmasının incelenmesi, Doktora Tezi, Anadolu Üniversitesi, Eskişehir.
  • [41] Özmen, D. (2008). ‘’Production and characterization of boron nitride nanotubes,’’ Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [42] Aydın, H. (2018). Nanoyapılı hegzagonal bor nitrür üretimi ve karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(2), 269-275.
  • [43] Korucu, Y. (2010). ‘’Nanotüp çeşitleri ve uygulamaları,’’ Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • [44] Şengönül, M., Durgun, İ., Dökmetaş, N., Kalkan, H., & Kaftanoğlu, B. (2018). Bor nitrür kaplamanın, kaynak çapaklarının metal aparat yüzeylerine yapışma davranışlarına etkisi. Makina Tasarım ve İmalat Dergisi, 14(1), 23-30.
  • [45] Çavdar, U., Atik, E., (2011). Geleneksel ve hızlı sinterleme yöntemleri, CBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 1 (15): 1-10.
  • [46] Benko, E., Morgiel, J., & Czeppe, T. (1997). BN sintered with Al: Microstructure and hardness. Ceramics international, 23(1), 89-91.
  • [47] Cavaliere, P., Sadeghi, B., Shamanian, M., & Ashrafizadeh, F. (2019). Al-based nanocomposites produced via spark plasma sintering: effect of processing route and reinforcing phases, Spark Plasma Sintering of Materials, Springer, 161–190.
  • [48] Karaoğlanlı, A. C., Türk, A., Özdemir, İ. (2014). Seramik esaslı plazma sprey kaplamaların oksidasyon davranışlarının incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14(3), 401-405.
  • [49] Arpaçay, D. (2009). Magnezyum AZ80 alaşımında yüksek basınç burulma işleminin mikroyapı ve mekanik özelliklere etkisi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [50] Lahiri, D., Singh, V., Li, L. H., Xing, T., Seal, S., Chen, Y., & Agarwal, A. (2012). Insight into reactions and interface between boron nitride nanotube and aluminum. Journal of Materials Research, 27(21), 2760-2770.
  • [51] Firestein, K. L., Corthay, S., Steinman, A. E., Matveev, A. T., Kovalskii, A. M., Sukhorukova, I. V., Golberg, D., Shtansky, D. V. (2017). High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Materials Science and Engineering: A, 681, 1-9.
  • [52] Lahiri, D., Hadjikhani, A., Zhang, C., Xing, T., Li, L. H., Chen, Y., & Agarwal, A. (2013). Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Materials Science and Engineering: A, 574, 149-156.
  • [53] Aydoğan, İ.K. (2007). Haddeleme prosesinde malzeme karakteristiğindeki değişimlerin incelenmesi ve modellenmesi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [54] Bisht, A., Kumar, V., Li, L. H., Chen, Y., Agarwal, A., & Lahiri, D. (2018). Effect of warm rolling and annealing on the mechanical properties of aluminum composite reinforced with boron nitride nanotubes. Materials Science and Engineering: A, 710, 366-373.
  • [55] Öztürk, C. (2004). B4C-TiB2-WC seramiklerinin sıcak pres tekniği ile üretimi, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • [56] Mısırlı, C. (2011). 5083 kalite alüminyum alaşımının homojenize edilerek sertlik değerlerinin ve mikroyapılarının incelenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Hıdır Sercan Çubuk 0000-0001-6598-351X

Uğur Çavdar 0000-0002-3434-6670

Publication Date December 31, 2022
Acceptance Date December 25, 2022
Published in Issue Year 2022

Cite

APA Çubuk, H. S., & Çavdar, U. (2022). Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method. International Scientific and Vocational Studies Journal, 6(2), 51-59. https://doi.org/10.47897/bilmes.1163980
AMA Çubuk HS, Çavdar U. Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method. ISVOS. December 2022;6(2):51-59. doi:10.47897/bilmes.1163980
Chicago Çubuk, Hıdır Sercan, and Uğur Çavdar. “Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method”. International Scientific and Vocational Studies Journal 6, no. 2 (December 2022): 51-59. https://doi.org/10.47897/bilmes.1163980.
EndNote Çubuk HS, Çavdar U (December 1, 2022) Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method. International Scientific and Vocational Studies Journal 6 2 51–59.
IEEE H. S. Çubuk and U. Çavdar, “Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method”, ISVOS, vol. 6, no. 2, pp. 51–59, 2022, doi: 10.47897/bilmes.1163980.
ISNAD Çubuk, Hıdır Sercan - Çavdar, Uğur. “Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method”. International Scientific and Vocational Studies Journal 6/2 (December 2022), 51-59. https://doi.org/10.47897/bilmes.1163980.
JAMA Çubuk HS, Çavdar U. Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method. ISVOS. 2022;6:51–59.
MLA Çubuk, Hıdır Sercan and Uğur Çavdar. “Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method”. International Scientific and Vocational Studies Journal, vol. 6, no. 2, 2022, pp. 51-59, doi:10.47897/bilmes.1163980.
Vancouver Çubuk HS, Çavdar U. Investigation Of Mechanical Properties Of Nano Boron Nitride Added Aluminum Material Produced By Different Production Method. ISVOS. 2022;6(2):51-9.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License