Research Article
BibTex RIS Cite

Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO

Year 2021, Volume: 5 Issue: 1, 62 - 75, 30.06.2021

Abstract

Mechanical properties of BSCCO superconductor prepared by using the meltquenching method were investigated by dynamic microindentation technique. The indentation load-displacement curves of the BSCCO sample were drawn by different peak load levels ranging from 200 mN to 1800 mN. Microhardness values were calculated from loading–unloading curves. The results showed that the hardness values exhibited peak load dependent (i.e., indentation size effect; ISE) behaviour on BSCCO superconductors. That behaviour was analyzed by the Hays-Kendall approach, the Proportional Specimen Resistance model (PSR), and the Modified PSR models. As a result, Modified PSR model was found to be the most effective one for microhardness determination of BSCCO superconductor.

References

  • [1] A.T. Ulgen, T. Turgay, C. Terzioglu, G. Yildirim and M. Oz, “Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality,” Pair wave function and polaronic states, vol.764, pp.755–766, 2018.
  • [2] A. Costa, F.M., N.M. Ferreira, S. Rasekh, A.J.S. Fernandes, M.A. Torres, M.A. Madre and J.C. Diez, Sotelo, “Very large superconducting currents induced by growth tailoring,” Cryst. Growth Des. vol.15, pp.2094–2101, 2015.
  • [3] B. Wang, Y. Ren, Z. Deng, J. Zheng, W. Zhang, J. Zhang and X. Zheng, “A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system,” IEEE Trans. Appl. Supercond. vol.27, pp.1–8, 2017.
  • [4] H. Wang, J. Zhang, X. Niu, B. Tian, H. Hui and Y. Xin, “Electrical insulation of HTS coils in saturated iron core superconducting fault current limiter,” IEEE Trans. Appl. Supercond. vol.24, pp.1–4, 2014.
  • [5] R.S. Dondapati, A. Kumar, G.R. Kumar, P.R. Usurumarti and S. Dondapati, “Superconducting magnetic energy storage (SMES) devices integrated with resistive type superconducting fault current limiter (SFCL) for fast recovery time,” J. Energy Storage. vol.13, pp.287–295, 2017.
  • [6] G. Yildirim, “Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders,” J. Alloy. Comp. vol.699, pp.247–255, 2017.
  • [7] Y. Zalaoglu, F. Karaboga, C. Terzioglu and G. Yildirim, “Improvement of mechanical performances and characteristics of bulk Bi-2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au,” Ceram. Int. 0–1, 2017, https://doi.org/10.1016/j.ceramint.2017.02.104.
  • [8] S. Safran, H. Ozturk, F. Bulut and O. Ozturk, “The influence of re-pelletization and heat treatment on physical , superconducting , magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method,” Ceram. Int. 1–7, 2017, https://doi.org/10.1016/j.ceramint.2017.08.114.
  • [9] N. Hudakova, V. Plechacek, P. Dordor, K. Flachbart, K. Knizek, J. Kovac et al., “Influence of PB concentration onmicrostructural and superconducting properties of BSCCOsuperconductors,” Supercond Sci Technol, vol.8 no.5, p.324, 1995.
  • [10] C.S. Lim, L. Wang, C.K. Chua, Z. Sofer, O. Jankovsk´y and M. Pumera, “High temperature superconducting materials asbi-functional catalysts for hydrogen evolution and oxygenreduction,” J Mater Chem A, vol.3, no.16, p.8346, 2015.
  • [11] H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, “A new high-TCoxide superconductor without a rare-earth element,” Jpn JAppl Phys 2 Lett; 27(2):L209.L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. Reading, MA: Addison Wesley, 2003. [E-book] Available: Safari e-book. 1988.
  • [12] H. Ohta, A. Koike, K. Hoshino, H. Kotaka, E. Sudoh, K. Kato et al., “Neuromagnetic squid measurements in a helmet-type superconducting magnetic shield of BSCCO,” IEEE Trans Appl. Supercond, vol.3, no.1, p.1953, 1993.
  • [13] J.S. Lamas, C.A. Baldan, C.Y. Shigue, A. Silhanek and V. Moshchalkov, “Electrical and magnetic characterization of BSCCO and YBCO HTS tapes for fault current limiter application,” IEEE TransAppl Supercond, vol.21, no.3, p.3398, 2011.
  • [14] J.R. Hull, “Applications of high-temperature superconductorsin power technology,” Rep Prog Phys, vol.66, no.11, p.1865, 2003.
  • [15] S. Cauffman, M. Blank, P. Cahalan, K. Felch, R.W. McGhee and M. Coffey, “Operation of a 95 GHz 100 kW gyrotron in a high-T-c(BSCCO) magnet,” In: IEEE. 2006.
  • [16] M. Kang, Y. Kim, H. Lee, G. Cha and K. Ryu, “Magnetic field andcritical current of a BSCCO HTS magnet at various aspectratios,” IEEE Trans Appl Supercond, vol.21, no.3, p.2271, 2011.
  • [17] R.W. McGhee, E.E. Burkhardt, A. Berryhill and D.M. Coffey, “Design and test results of a BSCCO-2223 magnet for gyrotron application,” IEEE Trans Appl Supercond, vol.15, no.2, p.1189, 2005.
  • [18] H. Fallah-Arani, S. Baghshahi, A. Sedghi, D. Stornaiuolo, F. Tafuri, D. Massarotti and N. Riahi-Noori, “The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route,” Ceram. Int., vol.44, pp.5209–5218, 2018, https://doi.org/10.1016/j.ceramint.2017.12.128.
  • [19] G. Kirat, O. Kizilaslan and M.A. Aksan, “Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2Cu3-xErxO10+δ superconducting system, Ceram. Int. vol.42, pp. 15072–15076, 2016.
  • [20] H. Yang, M.B. Shahzad, X. Yu and Y. Qi, “Influence mechanism of secondary gel technique on Bi-2212 superconducting phase : gel model simulation and verification,” Mater. Des., vol.99, pp. 115–119, 2016.
  • [21] D.C. Green, R. Boston, S. Glatzel, M.R. Lees, S.C. Wimbush, J. Potticary, W. Ogasawara and S.R. Hall, “On the mechanism of cuprate crystal Growth : the role of mixed metal carbonates,” Adv. Funct. Mater., vol.25, pp. 4700–4707, 2015.
  • [22] M.E. Kir, B. Özkurt and M.E. Aytekin, “The effect of K-Na co-doping on the formation and particle size of Bi-2212 phase,” Phys. B Condens. Matter vol.490, pp. 79–85, 2016.
  • [23] O. Sahin, O. Uzun, U. Kölemen, B. Düzgün and N. Ucar, “Indentation size effect and microhardness study of β-Sn single crystals,” Chin. Phys. Lett., vol.22, pp.3137- 3140, 2005.
  • [24] A. Ekicibil, A. Coskun, B. Ozcelik and K. Kıymac, “The Effect Of Gd Concentration On The Physical of Bi1.7Pb0.3-xGdxSr2Ca3Cu4O12+y Superconductors. Journal of Low Temprature Physics, vol.140, pp.105-117, 2005.
  • [25] W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res, vol.7, no.6, pp.1564–1583, 1992.
  • [26] I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussines problem for a punch of arbitrary profile,” International Journal of Science Engineering, vol.3, pp.47-57, 1965.
  • [27] C. Hays and E.G. Kendall, “An analysis of Knoop microhardness,” Metall., vol.6, pp. 275-282, 1973.
  • [28] H. Li and R.C. Bradt, “The microhardness indentation load/size effect in rutile and cassiterite single crystals,” Journal of Materials Science, vol.28, pp.917-926, 1993.
  • [29] J. Gong, J. Wu and Z. Guan, “Examination of the indentation size effect in low-load Vickers hardness testing of ceramics,” Journal of the European Ceramic Society, vol.19, pp.2625-2631, 1999.
  • [30] J.B. Quinn and V.D. Quinn, “Indentation brittleness of ceramics: a fresh approach,” Journal of Materials Science, vol.32, pp.4331-4346, 1997.

Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO

Year 2021, Volume: 5 Issue: 1, 62 - 75, 30.06.2021

Abstract

Mechanical properties of BSCCO superconductor prepared by using the meltquenching method were investigated by dynamic microindentation technique. The indentation load-displacement curves of the BSCCO sample were drawn by different peak load levels ranging from 200 mN to 1800 mN. Microhardness values were calculated from loading–unloading curves. The results showed that the hardness values exhibited peak load dependent (i.e., indentation size effect; ISE) behaviour on BSCCO superconductors. That behaviour was analyzed by the Hays-Kendall approach, the Proportional Specimen Resistance model (PSR), and the Modified PSR models. As a result, Modified PSR model was found to be the most effective one for microhardness determination of BSCCO superconductor.

References

  • [1] A.T. Ulgen, T. Turgay, C. Terzioglu, G. Yildirim and M. Oz, “Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality,” Pair wave function and polaronic states, vol.764, pp.755–766, 2018.
  • [2] A. Costa, F.M., N.M. Ferreira, S. Rasekh, A.J.S. Fernandes, M.A. Torres, M.A. Madre and J.C. Diez, Sotelo, “Very large superconducting currents induced by growth tailoring,” Cryst. Growth Des. vol.15, pp.2094–2101, 2015.
  • [3] B. Wang, Y. Ren, Z. Deng, J. Zheng, W. Zhang, J. Zhang and X. Zheng, “A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system,” IEEE Trans. Appl. Supercond. vol.27, pp.1–8, 2017.
  • [4] H. Wang, J. Zhang, X. Niu, B. Tian, H. Hui and Y. Xin, “Electrical insulation of HTS coils in saturated iron core superconducting fault current limiter,” IEEE Trans. Appl. Supercond. vol.24, pp.1–4, 2014.
  • [5] R.S. Dondapati, A. Kumar, G.R. Kumar, P.R. Usurumarti and S. Dondapati, “Superconducting magnetic energy storage (SMES) devices integrated with resistive type superconducting fault current limiter (SFCL) for fast recovery time,” J. Energy Storage. vol.13, pp.287–295, 2017.
  • [6] G. Yildirim, “Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders,” J. Alloy. Comp. vol.699, pp.247–255, 2017.
  • [7] Y. Zalaoglu, F. Karaboga, C. Terzioglu and G. Yildirim, “Improvement of mechanical performances and characteristics of bulk Bi-2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au,” Ceram. Int. 0–1, 2017, https://doi.org/10.1016/j.ceramint.2017.02.104.
  • [8] S. Safran, H. Ozturk, F. Bulut and O. Ozturk, “The influence of re-pelletization and heat treatment on physical , superconducting , magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method,” Ceram. Int. 1–7, 2017, https://doi.org/10.1016/j.ceramint.2017.08.114.
  • [9] N. Hudakova, V. Plechacek, P. Dordor, K. Flachbart, K. Knizek, J. Kovac et al., “Influence of PB concentration onmicrostructural and superconducting properties of BSCCOsuperconductors,” Supercond Sci Technol, vol.8 no.5, p.324, 1995.
  • [10] C.S. Lim, L. Wang, C.K. Chua, Z. Sofer, O. Jankovsk´y and M. Pumera, “High temperature superconducting materials asbi-functional catalysts for hydrogen evolution and oxygenreduction,” J Mater Chem A, vol.3, no.16, p.8346, 2015.
  • [11] H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, “A new high-TCoxide superconductor without a rare-earth element,” Jpn JAppl Phys 2 Lett; 27(2):L209.L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. Reading, MA: Addison Wesley, 2003. [E-book] Available: Safari e-book. 1988.
  • [12] H. Ohta, A. Koike, K. Hoshino, H. Kotaka, E. Sudoh, K. Kato et al., “Neuromagnetic squid measurements in a helmet-type superconducting magnetic shield of BSCCO,” IEEE Trans Appl. Supercond, vol.3, no.1, p.1953, 1993.
  • [13] J.S. Lamas, C.A. Baldan, C.Y. Shigue, A. Silhanek and V. Moshchalkov, “Electrical and magnetic characterization of BSCCO and YBCO HTS tapes for fault current limiter application,” IEEE TransAppl Supercond, vol.21, no.3, p.3398, 2011.
  • [14] J.R. Hull, “Applications of high-temperature superconductorsin power technology,” Rep Prog Phys, vol.66, no.11, p.1865, 2003.
  • [15] S. Cauffman, M. Blank, P. Cahalan, K. Felch, R.W. McGhee and M. Coffey, “Operation of a 95 GHz 100 kW gyrotron in a high-T-c(BSCCO) magnet,” In: IEEE. 2006.
  • [16] M. Kang, Y. Kim, H. Lee, G. Cha and K. Ryu, “Magnetic field andcritical current of a BSCCO HTS magnet at various aspectratios,” IEEE Trans Appl Supercond, vol.21, no.3, p.2271, 2011.
  • [17] R.W. McGhee, E.E. Burkhardt, A. Berryhill and D.M. Coffey, “Design and test results of a BSCCO-2223 magnet for gyrotron application,” IEEE Trans Appl Supercond, vol.15, no.2, p.1189, 2005.
  • [18] H. Fallah-Arani, S. Baghshahi, A. Sedghi, D. Stornaiuolo, F. Tafuri, D. Massarotti and N. Riahi-Noori, “The influence of heat treatment on the microstructure, flux pinning and magnetic properties of bulk BSCCO samples prepared by sol-gel route,” Ceram. Int., vol.44, pp.5209–5218, 2018, https://doi.org/10.1016/j.ceramint.2017.12.128.
  • [19] G. Kirat, O. Kizilaslan and M.A. Aksan, “Effect of the Er-substitution on critical current density in glass-ceramic Bi2Sr2Ca2Cu3-xErxO10+δ superconducting system, Ceram. Int. vol.42, pp. 15072–15076, 2016.
  • [20] H. Yang, M.B. Shahzad, X. Yu and Y. Qi, “Influence mechanism of secondary gel technique on Bi-2212 superconducting phase : gel model simulation and verification,” Mater. Des., vol.99, pp. 115–119, 2016.
  • [21] D.C. Green, R. Boston, S. Glatzel, M.R. Lees, S.C. Wimbush, J. Potticary, W. Ogasawara and S.R. Hall, “On the mechanism of cuprate crystal Growth : the role of mixed metal carbonates,” Adv. Funct. Mater., vol.25, pp. 4700–4707, 2015.
  • [22] M.E. Kir, B. Özkurt and M.E. Aytekin, “The effect of K-Na co-doping on the formation and particle size of Bi-2212 phase,” Phys. B Condens. Matter vol.490, pp. 79–85, 2016.
  • [23] O. Sahin, O. Uzun, U. Kölemen, B. Düzgün and N. Ucar, “Indentation size effect and microhardness study of β-Sn single crystals,” Chin. Phys. Lett., vol.22, pp.3137- 3140, 2005.
  • [24] A. Ekicibil, A. Coskun, B. Ozcelik and K. Kıymac, “The Effect Of Gd Concentration On The Physical of Bi1.7Pb0.3-xGdxSr2Ca3Cu4O12+y Superconductors. Journal of Low Temprature Physics, vol.140, pp.105-117, 2005.
  • [25] W.C. Oliver, G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res, vol.7, no.6, pp.1564–1583, 1992.
  • [26] I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussines problem for a punch of arbitrary profile,” International Journal of Science Engineering, vol.3, pp.47-57, 1965.
  • [27] C. Hays and E.G. Kendall, “An analysis of Knoop microhardness,” Metall., vol.6, pp. 275-282, 1973.
  • [28] H. Li and R.C. Bradt, “The microhardness indentation load/size effect in rutile and cassiterite single crystals,” Journal of Materials Science, vol.28, pp.917-926, 1993.
  • [29] J. Gong, J. Wu and Z. Guan, “Examination of the indentation size effect in low-load Vickers hardness testing of ceramics,” Journal of the European Ceramic Society, vol.19, pp.2625-2631, 1999.
  • [30] J.B. Quinn and V.D. Quinn, “Indentation brittleness of ceramics: a fresh approach,” Journal of Materials Science, vol.32, pp.4331-4346, 1997.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Cem Emeksiz

Uğur Kölemen

Fikret Yılmaz 0000-0002-1835-4961

Publication Date June 30, 2021
Acceptance Date June 18, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Emeksiz, C., Kölemen, U., & Yılmaz, F. (2021). Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO. International Scientific and Vocational Studies Journal, 5(1), 62-75.
AMA Emeksiz C, Kölemen U, Yılmaz F. Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO. ISVOS. June 2021;5(1):62-75.
Chicago Emeksiz, Cem, Uğur Kölemen, and Fikret Yılmaz. “Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO”. International Scientific and Vocational Studies Journal 5, no. 1 (June 2021): 62-75.
EndNote Emeksiz C, Kölemen U, Yılmaz F (June 1, 2021) Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO. International Scientific and Vocational Studies Journal 5 1 62–75.
IEEE C. Emeksiz, U. Kölemen, and F. Yılmaz, “Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO”, ISVOS, vol. 5, no. 1, pp. 62–75, 2021.
ISNAD Emeksiz, Cem et al. “Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO”. International Scientific and Vocational Studies Journal 5/1 (June 2021), 62-75.
JAMA Emeksiz C, Kölemen U, Yılmaz F. Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO. ISVOS. 2021;5:62–75.
MLA Emeksiz, Cem et al. “Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO”. International Scientific and Vocational Studies Journal, vol. 5, no. 1, 2021, pp. 62-75.
Vancouver Emeksiz C, Kölemen U, Yılmaz F. Investigation of Mechanical Properties of Gadalanium (Gd) Added High Temperature Superconductor BSCCO. ISVOS. 2021;5(1):62-75.


Creative Commons Lisansı


Creative Commons Atıf 4.0 It is licensed under an International License