Research Article
BibTex RIS Cite

Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound

Year 2024, Volume: 8 Issue: 2, 162 - 177, 30.12.2024
https://doi.org/10.47897/bilmes.1573560

Abstract

Schiff bases were first synthesized by Hugo Schiff in 1864. The formation of a carbon-nitrogen double bond is what gives specificity to Schiff bases. This double bond is referred to as an imine (R-N=C-R). This double bond contributes to the high activity of Schiff bases, allowing for extensive research across various fields and disciplines. Neurodegenerative diseases are conditions that continuously and irreversibly affect neurons and nerve cells in the central nervous system, and they are among the leading causes of death in developed countries. Alzheimer’s disease, which is a type of neurodegenerative disease, currently has about 5 million new cases each year, and there is no definitive and complete treatment method for it. Individuals with this disease exhibit symptoms such as memory loss, inability to form new memories, and slowing of cognitive functions. Additionally, these patients show imbalances in neurotransmitters responsible for facilitating neural transmission between neurons, particularly an irreversible loss of cholinergic neurons, which are a significant part of the central nervous system. Disruption of homeostasis in the mechanisms of acetylcholinesterase (AChE) and monoamine oxidase (MAO) neurotransmitters is indicated among the causes of Alzheimer’s disease. In this study; the physical, chemical and biological properties of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium molecule were investigated by quantum mechanical calculation methods. In support of the X-ray results, the geometrical parameters (bond lengths, and bond angles) and quantum chemical properties of the title compound were theoretically realized by the density functional theory method with B3LYP/6-311G(d,p) basis set using Gaussian 03W program. Herein, Frontier orbitals, molecular electrostatic potential surface, nonlinear optical properties, natural bond orbital analysis, Mulliken charges, and Hirshfeld surface analysis of the title compound were also calculated to explain the intermolecular interactions. Additionally, molecular docking results were performed with AChE and MAO-B enzymes obtained from the Protein Data Bank (PDB). All these studies have shown that the structure has high stability and forms a strong bond with the relevant enzymes.

References

  • [1] H. Schiff, “Unterscuhgen über Slicinderivative”, Justus Liebigs Annalen der Chemier vol. 150, no. 2, pp. 193-200, 1869.
  • [2] A. Hameed, M. Al-Rashida, S. M. Abid Ali, and K. M. Khan, “Schiff bases in medicinal chemistry: A patent review (2010-2015)”, Expert Opinion on Therapeutic Patents, vol. 27, no. 1, pp. 63-79, 2017. https://doi.org/10.1080/13543776.2017.1252752.
  • [3] H. M. Alkahtani, A. A. Almehizia, M. A. Al-Omar, A. J. Obaidullah, A. A. Zen, A. S. Hassan, and W. M. Aboulthana, “In vitro evaluation and bioinformatics analysis of Schiff bases bearing pyrazole scaffold as bioactive agents: Antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic”, Molecules, vol. 28, no. 20, 7125, 2023. https://doi.org/10.3390/molecules28207125.
  • [4] B. Pinchaipat, R. Chotima, M. Promkatkaew, S. Kitjaruwankul, K. Chainok, and T. Khudkham, “Experimental and theoretical studies on DNA binding and anticancer activity of nickel(II) and zinc(II) complexes with N-(8-quinolyl) salicylaldimine Schiff base ligands”, Chemistry, vol. 6, no. 4, pp. 618-639, 2024. https://doi.org/10.3390/chemistry6040037.
  • [5] J. Branković, M. G. Krokidis, I. Dousi, K. Papadopoulos, Z. D. Petrović, and V. P. Petrović, “Antioxidant and cytotoxic activities of selected salicylidene imines: Experimental and computational study”, Molecular Diversity, vol. 26, no. 6, 3115-3128, 2022. https://doi.org/10.1007/s11030-021-10370-9.
  • [6] D. Sarker, K. N. Ahmed, M. S. Rahman, and M. A. Kawsar, “Copper (II) complex of salicylaldehyde semicarbazone: Synthesis, characterization and antibacterial activity”. Asian Journal of Chemical Sciences, vol 6, no. 4, pp. 1-8, 2019. https://doi.org/10.9734/ajocs/2019/v6i430173.
  • [7] U. Saray and U. Çavdar, "Investigating the role of artificial intelligence in the diagnosis and treatment of Alzheimer’s disease," in VIII. International Scientific and Vocational Studies Congress (BILMES 2023), Turkey, Dec. 22-24, 2023, pp. 132-137. ISBN: 978-605-71214-9-3.
  • [8] I. Vecchio, L. Sorrentino, A. Paoletti, R. Marra, and M. Arbitrio, “The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease”, Journal of Central Nervous System Disease, pp. 1-13, 2021. https://doi.org/10.1177/11795735211029113.
  • [9] C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer, and M. Scazufca, “Global prevalence of dementia: A Delphi consensus study”. The Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005. https://doi.org/10.1016/S0140-6736(05)67889-0.
  • [10] E. Bomasang-Layno, and R. Bronsther, “Diagnosis and treatment of Alzheimer’s disease: An update”, Dela Journal of Public Health, vol. 7, no. 4, pp. 74-85, 2021. https://doi.org/10.32481/djph.2021.09.009.
  • [11] H. Hampel, M. M. Mesulam, A. C. Cuello, A. S. Khachaturian, R. F. Farlow, P. J. Snyder, E. Giacobini, and Z. S. Giacobini, “Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research”, Journal of Prevention of Alzheimer’s Disease, vol. 6, no. 1, pp. 2-15, 2019. https://doi.org/10.14283/jpad.2018.43.
  • [12] B. U. Islam, and S. Tabrez, “Management of Alzheimer’s disease: An insight of the enzymatic and other novel potential targets”, International Journal of Biological Macromolecules, vol. 97, pp. 700-709, 2017. https://doi.org/10.1016/j.ijbiomac.2017.01.076.
  • [13] S. Manzoor, and N. Hoda, “A comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer’s disease agents: A review”, European Journal of Medicinal Chemistry, vol. 206, 112787, 2020. https://doi.org/10.1016/j.ejmech.2020.112787.
  • [14] K. N. Westlund, R. M. Denney, R. M. Rose, and C. W. Abell, “Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem”, Neuroscience, vol. 25, no. 2, pp. 439-456, 1988. https://doi.org/10.1016/0306-4522(88)90250-3.
  • [15] A. Elmali, Y. Elerman, and I. Svoboda, “5-Chloro-N-(2-hydroxy-5-methylphenyl)salicylaldimine”, Acta Crystallographica Section C: Crystal Structure Communications, vol. 57, no. 4, pp. 485-486, 2001. https://doi.org/10.1107/s0108270101000993.
  • [16] Gaussian 03, Wallingford CT. [Online]. Available: https://gaussian.com/, 2004.
  • [17] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648-5652, 1993. https://doi.org/10.1063/1.464913.
  • [18] C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, vol. 37, pp. 785-789, 1988. https://doi.org/10.1103/PhysRevB.37.785.
  • [19] G. A. Petersson, and M. A. Al-Laham “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms”, The Journal of Chemical Physics, vol. 94, 6081-6090, 1991. https://doi.org/10.1063/1.460447.
  • [20] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields”, The Journal of Physical Chemistry, vol. 98, pp. 11623-11627, 1994. http://dx.doi.org/10.1021/j100096a001.
  • [21] A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc, Pittsburg, Pa, USA, 2001.
  • [22] M. J. Turner, J. J. Mckinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, CrystalExplorer17. University of Western Australia, Perth., 2017.
  • [23] F. L. Hirshfeld, “Bonded-Atom Fragments for Describing Molecular Charge Densities”, Theoretica Chimica Acta, vol. 44, pp. 129-138, 1977. https://doi.org/10.1007/bf00549096.
  • [24] M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis”, CrystEngComm, vol. 11, pp. 19-32, 2009. http://dx.doi.org/10.1039/B818330A.
  • [25] J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, “Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces”, Chemical Communications, vol. 37, pp. 3814-3816, 2007. http://dx.doi.org/10.1039/b704980c.
  • [26] C. Bartolucci, E. Perola, C. Pilger, G. Fels, and D. Lamba, D. (2001). “Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs”, Proteins: Structure, Function, and Bioinformatics, vol. 42, no. 2, pp. 182-191, 2001. https://doi.org/10.1002/1097-0134.
  • [27] C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, D. E. Edmondson, and A. Mattevi, “Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs”, Journal of Medicinal Chemistry, vol. 50, no. 23, pp. 5848-5852, 2007. https://doi.org/10.1021/jm070677.
  • [28] O. Trott, and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, Journal of Computational Chemistry, vol 31, no. 2,pp. 455-461, 2010. https://doi.org/10.1002/jcc.21334.
  • [29] D. S. Biovia, “Discovery Studio Visualizer. San Diego”, CA, USA, 936, 240-249, 2017.
  • [30] S. Başak, “Antitümor ve antikanserojen erkili bazı schiff bazı moleküllerinin moleküler yerleştirme yöntemi ile incelenmesi”, Yüksek Lisans Tezi, Sinop Üniversitesi, Fen Bilimleri Enstitüsü, 2023.
  • [31] H. İnaç, “Crystal Structure of Zwitterionic (E)-9-(((3-hydroxyphenyl)iminio)methyl)-1,2,3,5,6,7- Hexahydropyrido[3,2,1-ij]Quinolin-8-Olate”, International Scientific and Vocational Studies Journal, vol 7, no. 2, 72-78, 2023. https://doi.org/10.47897/bilmes.1316337.
  • [32] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and A. Erdönmez, “2-[(2-Hydroxy-4-nitrophenyl)-aminomethylene]cyclohexa-3,5-dien-1(2H)-one, Acta Crystallographica Section C, vol. 59, no. 10, pp. o601-o602, 2003. https://dx.doi.org/10.1107/S0108270103018456.
  • [33] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and O. Büyükgüngör, “(Z)-4-[(E)-(4-Butylphenyl)diazenyl]-6-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene}-2-methoxycyclohexa-2,4-dienone, Acta Crystallographica Section E, vol. 61, no. 12, pp. o4139-o4141, 2003. https://dx.doi.org/ 10.1107/S1600536805037177.
  • [34] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and C. Kazak, “(Z)-6-{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene}-2-methoxy-4-{(E)-[3(trifluoromethyl)phenyl]diazenyl}cyclohexa-2,4-dienone”, Acta Crystallographica Section E, vol. 61, pp. o4051-o4053, 2005. https://dx.doi.org/ 10.1107/S160053680503541.
  • [35] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and O. Büyükgüngör, “(Z)-6-{[1,3-Dihydroxy-2-(hydroxy-methyl)propan-2-ylamino]methylene}-2-methoxy-4-[(E)-o-tolyldiazenyl]-cyclohexa-2,4-dienone”, Acta Crystallographica Section C, vol. 62, no. 8, pp. o483-o485, 2006. https://dx.doi.org/ 10.1107/S010827010602052X.
  • [36] C. J. Cramer, “Essentials of computational chemistry: theories and models”, Wiley, England, 562 pp., ISBN 0-471-48551-9, 2002.
  • [37] D. Sajan, J. Hubert, V. S. Jayakumar, and J. Zaleski, “Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate”, Journal of Molecular Structure, vol. 785, no. 1-3, pp. 45-53, 2005. https://doi.org/10.1016/j.molstruc.2005.01.004.
  • [38] C. Bosshard, K. Suttur, O. Pretre, M. Flörsheimer, P. Kaatz, and P. Günter, “Second-Order Nonlinear Optical Organic Materials: Recent Developments”, Springer Berlin Heidelberg, vol. 72, 72 p., 2000. https://doi.org/10.1007/978-3-540-49713-4_3.
  • [39] L. Li, D. Sun, Z. Wang, X. Song, and S. Sun, “Synthesis, characterization and NLO properties of a new 3D coordination polymer assembled from p-aminobenzoic acid”, Solid State Sciences, vol. 11, no. 5, pp. 1040-1043, 2009. https://doi.org/10.1016/j.solidstatesciences.2008.12.003.
  • [40] A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint”, Chemical Reviews, vol. 88, no. 6, pp. 899-926, 1988. https://doi.org/ 10.1021/cr00088a005.
  • [41] F. Jensen, “Introduction to Computational Chemistry”, 2nd ed., Wiley, 2004.
  • [42] C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach”, Chemical Physics Letters, vol. 460, pp. 552-558, 2008. https://doi.org/10.1016/j.cplett.2008.06.047.
  • [43] R. S. Mulliken, “Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis”, The Journal of Chemical Physics, vol. 36, pp. 3428-3439, 1962. https://doi.org/10.1063/1.1732476.
  • [44] R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I”, The Journal of Chemical Physics, vol. 23, pp. 1833-1840, 1955. https://doi.org/10.1063/1.1740588.
  • [45] M. A. Spackman, J. J. McKinnon, and D. Jayatilaka, “Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals”, CrystEngComm, vol. 10, no. 4, pp. 377-388, 2008. https://doi.org/10.1039/B800654B
  • [46] B. Koşar, “4-Metoksi ve 3-hidroksi salisilaldehit türevi bazı schiff bazlarının yapısal özelliklerinin deneysel x-ışını kırınımı ve kuramsal yöntemlerle incelenmesi”, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, 2008.
  • [47] C. C. Ersanli, G. Kaya Kantar, Z. Demircioğlu, and S. Şaşmaz, “4-(2-Methoxy-4-(prop-1-enyl)phenoxy)phthalonitrile; synthesis, characterization, Hirshfeld surface analysis and chemical activity studies”, Molecular Crystals and Liquid Crystals, vol. 667, no. 1, pp. 88-111, 2018. https://doi.org/10.1080/15421406.2018.1528417.
  • [48] S . Çakmak, S. Kansiz, M. Azam, C.C. Ersanlı, Ö. Idili, A. Veyisoğlu, H. Yakan, H. Kütük, A. Chutia, “Synthesis, structural investigation, Hirshfeld surface analysis, and biological evaluation of N-(3-cyanothiophen-2-yl)-2-(thiophen-2-yl)”, Acetamide, vol. 7, no. 13, pp. 11320-11329, 2022.
  • [49] Z. Demircioğlu, Ç. A. Kaştaş, G. Kaştaş, C.C. Ersanlı, “Synthesis, crystal structure, computational chemistry studies and Hirshfeld surface analysis of two Schiff bases, (E)-2-[(4-bromo-2- methylphenylimino)methyl]-4-methylphenol and (E)-2-[(4-bromo-2-methylphenylimino)methyl]-6-methylphenol”, Molecular Crystals and Liquid Crystals, 723, pp. 45-61, 2021. https://doi.org/10.1080/15421406.2020.1871178.
  • [50] M. J. Turner, S. P. Thomas, M. V. Shi, D. Jayatilaka, and M. A. Spackman, “Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals”, Chemical Communications, vol. 51, no. 18, pp. 3735-3738, 2015. https://doi.org/10.1039/C4CC09201C.
  • [51] B. K. Shoichet, “Virtual screening of chemical libraries”, Nature, vol. 432, pp. 862-865, 2005. https://doi.org/10.1038/nature03197.
  • [52] S. Umar, S. Katariya, R. Soni, S. S. Soman, and B. Suresh, “o-Allyloxy chalcone derivatives: design, synthesis, anticancer activity, network pharmacology and molecular docking”, Chemical Papers, vol. 78, pp. 8903-8917, 2024. https://doi.org/10.1007/s11696-024-03723-9.
  • [53] B. Banaganapalli, N. Shaik, K. Hakeem, K., and R. Elango, “Molecular docking”, In N. Shaik, K. Hakeem, B. Banaganapalli, and R. Elango (Eds.), Essentials of Bioinformatics, Vol. I, pp. 1-15, 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-02634-9_15.
  • [54] A. J. Owoloye, F. C. Ligali, O. A. Enejoh, A. Z. Musa, O. Aina, E. T. Idowu, and K. M. Oyebola, “Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors” PLoS One, vol. 17, no. 8, e0268269, 2022. https://doi.org/10.1371/journal.pone.0268269.
  • [55] T. Ahmed, A. U. Khan, M. Abbass, E. R. Filho, Z. Ud-Din, and A. Khan, “Synthesis, characterization, molecular docking, analgesic, antiplatelet and anticoagulant effects of dibenzylidene ketone derivatives”, Chemistry Central Journal, vol. 12, no. 1, pp. 1-18, 2018. https://doi.org/10.1186/s13065-018-0507-1.

Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound

Year 2024, Volume: 8 Issue: 2, 162 - 177, 30.12.2024
https://doi.org/10.47897/bilmes.1573560

Abstract

Schiff bases were first synthesized by Hugo Schiff in 1864. The formation of a carbon-nitrogen double bond is what gives specificity to Schiff bases. This double bond is referred to as an imine (R-N=C-R). This double bond contributes to the high activity of Schiff bases, allowing for extensive research across various fields and disciplines. Neurodegenerative diseases are conditions that continuously and irreversibly affect neurons and nerve cells in the central nervous system, and they are among the leading causes of death in developed countries. Alzheimer’s disease, which is a type of neurodegenerative disease, currently has about 5 million new cases each year, and there is no definitive and complete treatment method for it. Individuals with this disease exhibit symptoms such as memory loss, inability to form new memories, and slowing of cognitive functions. Additionally, these patients show imbalances in neurotransmitters responsible for facilitating neural transmission between neurons, particularly an irreversible loss of cholinergic neurons, which are a significant part of the central nervous system. Disruption of homeostasis in the mechanisms of acetylcholinesterase (AChE) and monoamine oxidase (MAO) neurotransmitters is indicated among the causes of Alzheimer’s disease. In this study; the physical, chemical and biological properties of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium molecule were investigated by quantum mechanical calculation methods. In support of the X-ray results, the geometrical parameters (bond lengths, and bond angles) and quantum chemical properties of the title compound were theoretically realized by the density functional theory method with B3LYP/6-311G(d,p) basis set using Gaussian 03W program. Herein, Frontier orbitals, molecular electrostatic potential surface, nonlinear optical properties, natural bond orbital analysis, Mulliken charges, and Hirshfeld surface analysis of the title compound were also calculated to explain the intermolecular interactions. Additionally, molecular docking results were performed with AChE and MAO-B enzymes obtained from the Protein Data Bank (PDB). All these studies have shown that the structure has high stability and forms a strong bond with the relevant enzymes.

References

  • [1] H. Schiff, “Unterscuhgen über Slicinderivative”, Justus Liebigs Annalen der Chemier vol. 150, no. 2, pp. 193-200, 1869.
  • [2] A. Hameed, M. Al-Rashida, S. M. Abid Ali, and K. M. Khan, “Schiff bases in medicinal chemistry: A patent review (2010-2015)”, Expert Opinion on Therapeutic Patents, vol. 27, no. 1, pp. 63-79, 2017. https://doi.org/10.1080/13543776.2017.1252752.
  • [3] H. M. Alkahtani, A. A. Almehizia, M. A. Al-Omar, A. J. Obaidullah, A. A. Zen, A. S. Hassan, and W. M. Aboulthana, “In vitro evaluation and bioinformatics analysis of Schiff bases bearing pyrazole scaffold as bioactive agents: Antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic”, Molecules, vol. 28, no. 20, 7125, 2023. https://doi.org/10.3390/molecules28207125.
  • [4] B. Pinchaipat, R. Chotima, M. Promkatkaew, S. Kitjaruwankul, K. Chainok, and T. Khudkham, “Experimental and theoretical studies on DNA binding and anticancer activity of nickel(II) and zinc(II) complexes with N-(8-quinolyl) salicylaldimine Schiff base ligands”, Chemistry, vol. 6, no. 4, pp. 618-639, 2024. https://doi.org/10.3390/chemistry6040037.
  • [5] J. Branković, M. G. Krokidis, I. Dousi, K. Papadopoulos, Z. D. Petrović, and V. P. Petrović, “Antioxidant and cytotoxic activities of selected salicylidene imines: Experimental and computational study”, Molecular Diversity, vol. 26, no. 6, 3115-3128, 2022. https://doi.org/10.1007/s11030-021-10370-9.
  • [6] D. Sarker, K. N. Ahmed, M. S. Rahman, and M. A. Kawsar, “Copper (II) complex of salicylaldehyde semicarbazone: Synthesis, characterization and antibacterial activity”. Asian Journal of Chemical Sciences, vol 6, no. 4, pp. 1-8, 2019. https://doi.org/10.9734/ajocs/2019/v6i430173.
  • [7] U. Saray and U. Çavdar, "Investigating the role of artificial intelligence in the diagnosis and treatment of Alzheimer’s disease," in VIII. International Scientific and Vocational Studies Congress (BILMES 2023), Turkey, Dec. 22-24, 2023, pp. 132-137. ISBN: 978-605-71214-9-3.
  • [8] I. Vecchio, L. Sorrentino, A. Paoletti, R. Marra, and M. Arbitrio, “The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease”, Journal of Central Nervous System Disease, pp. 1-13, 2021. https://doi.org/10.1177/11795735211029113.
  • [9] C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rimmer, and M. Scazufca, “Global prevalence of dementia: A Delphi consensus study”. The Lancet, vol. 366, no. 9503, pp. 2112-2117, 2005. https://doi.org/10.1016/S0140-6736(05)67889-0.
  • [10] E. Bomasang-Layno, and R. Bronsther, “Diagnosis and treatment of Alzheimer’s disease: An update”, Dela Journal of Public Health, vol. 7, no. 4, pp. 74-85, 2021. https://doi.org/10.32481/djph.2021.09.009.
  • [11] H. Hampel, M. M. Mesulam, A. C. Cuello, A. S. Khachaturian, R. F. Farlow, P. J. Snyder, E. Giacobini, and Z. S. Giacobini, “Revisiting the cholinergic hypothesis in Alzheimer’s disease: Emerging evidence from translational and clinical research”, Journal of Prevention of Alzheimer’s Disease, vol. 6, no. 1, pp. 2-15, 2019. https://doi.org/10.14283/jpad.2018.43.
  • [12] B. U. Islam, and S. Tabrez, “Management of Alzheimer’s disease: An insight of the enzymatic and other novel potential targets”, International Journal of Biological Macromolecules, vol. 97, pp. 700-709, 2017. https://doi.org/10.1016/j.ijbiomac.2017.01.076.
  • [13] S. Manzoor, and N. Hoda, “A comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer’s disease agents: A review”, European Journal of Medicinal Chemistry, vol. 206, 112787, 2020. https://doi.org/10.1016/j.ejmech.2020.112787.
  • [14] K. N. Westlund, R. M. Denney, R. M. Rose, and C. W. Abell, “Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem”, Neuroscience, vol. 25, no. 2, pp. 439-456, 1988. https://doi.org/10.1016/0306-4522(88)90250-3.
  • [15] A. Elmali, Y. Elerman, and I. Svoboda, “5-Chloro-N-(2-hydroxy-5-methylphenyl)salicylaldimine”, Acta Crystallographica Section C: Crystal Structure Communications, vol. 57, no. 4, pp. 485-486, 2001. https://doi.org/10.1107/s0108270101000993.
  • [16] Gaussian 03, Wallingford CT. [Online]. Available: https://gaussian.com/, 2004.
  • [17] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648-5652, 1993. https://doi.org/10.1063/1.464913.
  • [18] C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, vol. 37, pp. 785-789, 1988. https://doi.org/10.1103/PhysRevB.37.785.
  • [19] G. A. Petersson, and M. A. Al-Laham “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms”, The Journal of Chemical Physics, vol. 94, 6081-6090, 1991. https://doi.org/10.1063/1.460447.
  • [20] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields”, The Journal of Physical Chemistry, vol. 98, pp. 11623-11627, 1994. http://dx.doi.org/10.1021/j100096a001.
  • [21] A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc, Pittsburg, Pa, USA, 2001.
  • [22] M. J. Turner, J. J. Mckinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, CrystalExplorer17. University of Western Australia, Perth., 2017.
  • [23] F. L. Hirshfeld, “Bonded-Atom Fragments for Describing Molecular Charge Densities”, Theoretica Chimica Acta, vol. 44, pp. 129-138, 1977. https://doi.org/10.1007/bf00549096.
  • [24] M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis”, CrystEngComm, vol. 11, pp. 19-32, 2009. http://dx.doi.org/10.1039/B818330A.
  • [25] J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, “Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces”, Chemical Communications, vol. 37, pp. 3814-3816, 2007. http://dx.doi.org/10.1039/b704980c.
  • [26] C. Bartolucci, E. Perola, C. Pilger, G. Fels, and D. Lamba, D. (2001). “Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs”, Proteins: Structure, Function, and Bioinformatics, vol. 42, no. 2, pp. 182-191, 2001. https://doi.org/10.1002/1097-0134.
  • [27] C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, D. E. Edmondson, and A. Mattevi, “Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs”, Journal of Medicinal Chemistry, vol. 50, no. 23, pp. 5848-5852, 2007. https://doi.org/10.1021/jm070677.
  • [28] O. Trott, and A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, Journal of Computational Chemistry, vol 31, no. 2,pp. 455-461, 2010. https://doi.org/10.1002/jcc.21334.
  • [29] D. S. Biovia, “Discovery Studio Visualizer. San Diego”, CA, USA, 936, 240-249, 2017.
  • [30] S. Başak, “Antitümor ve antikanserojen erkili bazı schiff bazı moleküllerinin moleküler yerleştirme yöntemi ile incelenmesi”, Yüksek Lisans Tezi, Sinop Üniversitesi, Fen Bilimleri Enstitüsü, 2023.
  • [31] H. İnaç, “Crystal Structure of Zwitterionic (E)-9-(((3-hydroxyphenyl)iminio)methyl)-1,2,3,5,6,7- Hexahydropyrido[3,2,1-ij]Quinolin-8-Olate”, International Scientific and Vocational Studies Journal, vol 7, no. 2, 72-78, 2023. https://doi.org/10.47897/bilmes.1316337.
  • [32] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and A. Erdönmez, “2-[(2-Hydroxy-4-nitrophenyl)-aminomethylene]cyclohexa-3,5-dien-1(2H)-one, Acta Crystallographica Section C, vol. 59, no. 10, pp. o601-o602, 2003. https://dx.doi.org/10.1107/S0108270103018456.
  • [33] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and O. Büyükgüngör, “(Z)-4-[(E)-(4-Butylphenyl)diazenyl]-6-{[1,3-dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene}-2-methoxycyclohexa-2,4-dienone, Acta Crystallographica Section E, vol. 61, no. 12, pp. o4139-o4141, 2003. https://dx.doi.org/ 10.1107/S1600536805037177.
  • [34] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and C. Kazak, “(Z)-6-{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-ylamino]methylene}-2-methoxy-4-{(E)-[3(trifluoromethyl)phenyl]diazenyl}cyclohexa-2,4-dienone”, Acta Crystallographica Section E, vol. 61, pp. o4051-o4053, 2005. https://dx.doi.org/ 10.1107/S160053680503541.
  • [35] C. C. Ersanlı, Ç. Albayrak, M. Odabaşoğlu, and O. Büyükgüngör, “(Z)-6-{[1,3-Dihydroxy-2-(hydroxy-methyl)propan-2-ylamino]methylene}-2-methoxy-4-[(E)-o-tolyldiazenyl]-cyclohexa-2,4-dienone”, Acta Crystallographica Section C, vol. 62, no. 8, pp. o483-o485, 2006. https://dx.doi.org/ 10.1107/S010827010602052X.
  • [36] C. J. Cramer, “Essentials of computational chemistry: theories and models”, Wiley, England, 562 pp., ISBN 0-471-48551-9, 2002.
  • [37] D. Sajan, J. Hubert, V. S. Jayakumar, and J. Zaleski, “Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate”, Journal of Molecular Structure, vol. 785, no. 1-3, pp. 45-53, 2005. https://doi.org/10.1016/j.molstruc.2005.01.004.
  • [38] C. Bosshard, K. Suttur, O. Pretre, M. Flörsheimer, P. Kaatz, and P. Günter, “Second-Order Nonlinear Optical Organic Materials: Recent Developments”, Springer Berlin Heidelberg, vol. 72, 72 p., 2000. https://doi.org/10.1007/978-3-540-49713-4_3.
  • [39] L. Li, D. Sun, Z. Wang, X. Song, and S. Sun, “Synthesis, characterization and NLO properties of a new 3D coordination polymer assembled from p-aminobenzoic acid”, Solid State Sciences, vol. 11, no. 5, pp. 1040-1043, 2009. https://doi.org/10.1016/j.solidstatesciences.2008.12.003.
  • [40] A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint”, Chemical Reviews, vol. 88, no. 6, pp. 899-926, 1988. https://doi.org/ 10.1021/cr00088a005.
  • [41] F. Jensen, “Introduction to Computational Chemistry”, 2nd ed., Wiley, 2004.
  • [42] C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach”, Chemical Physics Letters, vol. 460, pp. 552-558, 2008. https://doi.org/10.1016/j.cplett.2008.06.047.
  • [43] R. S. Mulliken, “Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis”, The Journal of Chemical Physics, vol. 36, pp. 3428-3439, 1962. https://doi.org/10.1063/1.1732476.
  • [44] R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I”, The Journal of Chemical Physics, vol. 23, pp. 1833-1840, 1955. https://doi.org/10.1063/1.1740588.
  • [45] M. A. Spackman, J. J. McKinnon, and D. Jayatilaka, “Electrostatic potentials mapped on Hirshfeld surfaces provide direct insight into intermolecular interactions in crystals”, CrystEngComm, vol. 10, no. 4, pp. 377-388, 2008. https://doi.org/10.1039/B800654B
  • [46] B. Koşar, “4-Metoksi ve 3-hidroksi salisilaldehit türevi bazı schiff bazlarının yapısal özelliklerinin deneysel x-ışını kırınımı ve kuramsal yöntemlerle incelenmesi”, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, 2008.
  • [47] C. C. Ersanli, G. Kaya Kantar, Z. Demircioğlu, and S. Şaşmaz, “4-(2-Methoxy-4-(prop-1-enyl)phenoxy)phthalonitrile; synthesis, characterization, Hirshfeld surface analysis and chemical activity studies”, Molecular Crystals and Liquid Crystals, vol. 667, no. 1, pp. 88-111, 2018. https://doi.org/10.1080/15421406.2018.1528417.
  • [48] S . Çakmak, S. Kansiz, M. Azam, C.C. Ersanlı, Ö. Idili, A. Veyisoğlu, H. Yakan, H. Kütük, A. Chutia, “Synthesis, structural investigation, Hirshfeld surface analysis, and biological evaluation of N-(3-cyanothiophen-2-yl)-2-(thiophen-2-yl)”, Acetamide, vol. 7, no. 13, pp. 11320-11329, 2022.
  • [49] Z. Demircioğlu, Ç. A. Kaştaş, G. Kaştaş, C.C. Ersanlı, “Synthesis, crystal structure, computational chemistry studies and Hirshfeld surface analysis of two Schiff bases, (E)-2-[(4-bromo-2- methylphenylimino)methyl]-4-methylphenol and (E)-2-[(4-bromo-2-methylphenylimino)methyl]-6-methylphenol”, Molecular Crystals and Liquid Crystals, 723, pp. 45-61, 2021. https://doi.org/10.1080/15421406.2020.1871178.
  • [50] M. J. Turner, S. P. Thomas, M. V. Shi, D. Jayatilaka, and M. A. Spackman, “Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals”, Chemical Communications, vol. 51, no. 18, pp. 3735-3738, 2015. https://doi.org/10.1039/C4CC09201C.
  • [51] B. K. Shoichet, “Virtual screening of chemical libraries”, Nature, vol. 432, pp. 862-865, 2005. https://doi.org/10.1038/nature03197.
  • [52] S. Umar, S. Katariya, R. Soni, S. S. Soman, and B. Suresh, “o-Allyloxy chalcone derivatives: design, synthesis, anticancer activity, network pharmacology and molecular docking”, Chemical Papers, vol. 78, pp. 8903-8917, 2024. https://doi.org/10.1007/s11696-024-03723-9.
  • [53] B. Banaganapalli, N. Shaik, K. Hakeem, K., and R. Elango, “Molecular docking”, In N. Shaik, K. Hakeem, B. Banaganapalli, and R. Elango (Eds.), Essentials of Bioinformatics, Vol. I, pp. 1-15, 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-02634-9_15.
  • [54] A. J. Owoloye, F. C. Ligali, O. A. Enejoh, A. Z. Musa, O. Aina, E. T. Idowu, and K. M. Oyebola, “Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors” PLoS One, vol. 17, no. 8, e0268269, 2022. https://doi.org/10.1371/journal.pone.0268269.
  • [55] T. Ahmed, A. U. Khan, M. Abbass, E. R. Filho, Z. Ud-Din, and A. Khan, “Synthesis, characterization, molecular docking, analgesic, antiplatelet and anticoagulant effects of dibenzylidene ketone derivatives”, Chemistry Central Journal, vol. 12, no. 1, pp. 1-18, 2018. https://doi.org/10.1186/s13065-018-0507-1.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Condensed Matter Modelling and Density Functional Theory
Journal Section Articles
Authors

Cem Cüneyt Ersanlı 0000-0002-8113-5091

Sultan Başak 0000-0003-0541-3667

Early Pub Date December 30, 2024
Publication Date December 30, 2024
Submission Date October 25, 2024
Acceptance Date November 23, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Ersanlı, C. C., & Başak, S. (2024). Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound. International Scientific and Vocational Studies Journal, 8(2), 162-177. https://doi.org/10.47897/bilmes.1573560
AMA Ersanlı CC, Başak S. Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound. ISVOS. December 2024;8(2):162-177. doi:10.47897/bilmes.1573560
Chicago Ersanlı, Cem Cüneyt, and Sultan Başak. “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-Chloro-2-Oxobenzyl)-2-Hydroxy-5-Methylanilinium Compound”. International Scientific and Vocational Studies Journal 8, no. 2 (December 2024): 162-77. https://doi.org/10.47897/bilmes.1573560.
EndNote Ersanlı CC, Başak S (December 1, 2024) Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound. International Scientific and Vocational Studies Journal 8 2 162–177.
IEEE C. C. Ersanlı and S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound”, ISVOS, vol. 8, no. 2, pp. 162–177, 2024, doi: 10.47897/bilmes.1573560.
ISNAD Ersanlı, Cem Cüneyt - Başak, Sultan. “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-Chloro-2-Oxobenzyl)-2-Hydroxy-5-Methylanilinium Compound”. International Scientific and Vocational Studies Journal 8/2 (December 2024), 162-177. https://doi.org/10.47897/bilmes.1573560.
JAMA Ersanlı CC, Başak S. Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound. ISVOS. 2024;8:162–177.
MLA Ersanlı, Cem Cüneyt and Sultan Başak. “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-Chloro-2-Oxobenzyl)-2-Hydroxy-5-Methylanilinium Compound”. International Scientific and Vocational Studies Journal, vol. 8, no. 2, 2024, pp. 162-77, doi:10.47897/bilmes.1573560.
Vancouver Ersanlı CC, Başak S. Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound. ISVOS. 2024;8(2):162-77.


Creative Commons Lisansı


Creative Commons Atıf 4.0 It is licensed under an International License