Year 2021, Volume 14 , Issue 1, Pages 167 - 174 2021-04-15

Bitkiler, rekombinant proteinlerin ve diğer biyofarmasotiklerin kolay, ucuz ve güvenli üretiminin sağlanabildiği ve geri saflaştırılabildiği platformlardır. Günümüzde bakteri ya da memeli hücre kültürlerinde üretilen büyüme hormonu, antikor süt proteinleri, serum albumini ve çeşitli endüstriyel enzimler gibi birçok rekombinant proteinin bitkisel dokuda ya da bitki hücre kültüründe üretimi gerçekleştirilmiştir. Bitkisel dokuların rekombinant viral ve bakteriyel antijenlerin üretimleri için uygun post-translasyonel modifikasyonları sağlamaları ve mikroorganizmalarda üretilen rekombinant aşılar ile aynı biyolojik aktiviteyi göstermeleri, aşı üretiminde kullanılmalarının önünü açmıştır. Bitkisel rekombinant protein üretimi, hedef gen dizisinin bitki hücresindeki konumuna bağlı olarak stabil veya geçici entegrasyonunu gerektirir. Biyolistik yöntemi hedef genin çekirdek veya kloroplastta stabil transformasyonu için kullanılırken, bir bitki patojeni olan Agrobacterium sp. aracılı gen transferi yöntemi, geçici gen transferi için kullanılmaktadır. Bitkisel sistemler kanıtlanmış üretim kapasiteleri ve ekonomik fizibiliteleri ile farmasotik proteinlerin endüstriyel boyutta üretimleri için son derece uygun ekspresyon vektörleridir.
Plants are platforms where recombinant proteins and other biopharmaceuticals can be produced easily, cheaply and safely and can be purified back. Recently, many recombinant proteins such as growth hormone, antibody milk proteins, serum albumin and various industrial enzymes produced in bacterial or mammalian cell cultures have been produced in plant tissue or in plant cell culture. Plant tissues provide suitable post-translational modifications for production of recombinant viral and bacterial antigens and show the same biological activity as the recombinant vaccines produced in microorganisms. All of these have paved the way for their usage in vaccine production. Production of recombinant protein in plants requires stable or transient integration of target gene sequence depending on the location in the plant cell. While the biolistic method is used for the stable transformation of the target gene in the nucleus or chloroplast, plant pathogen Agrobacterium sp. mediated gene transfer method is used for transient gene transfer. Plants are extremely suitable expression vectors for industrial production of pharmaceutical proteins, with their proven production capacity and economic feasibility.
  • 1. Hamborsky, J., Kroger A., Wolfe S, eds. 13th ed. (2015) Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases. Washington D.C. Public Health Foundation.1,4.
  • 2. Wang, H., Dwyer-Lindgren L., Lofgren, K. T., Rajaratnam, J. K., Marcus, J. R., Levin-Rector, A., Levitz, C. E., Lopez, A. D., & Murray, C. J. (2012). Age-specific and sex-specific mortality in 187 countries, 1970–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2071-2094.
  • 3. Ohmit, S. E., Victor, J. C. , Rotthoff, J. R., Teich, E. R., Truscon, R. K., Baum, L. L., Rangarajan, B., Newton, D. W., Boulton, M. L., & Monto, A. S. (2006). Prevention of antigenically drifted influenza by inactivated and live attenuated vaccines. New England Journal of Medicine, 355(24), 2513-2522.
  • 4. Moghaddam, A., Olszewska, W., Wang, B., Tregoning, J. S., Helson, R., Sattentau, Q. J., & P. J. Openshaw (2006). A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nature Medicine, 12(8), 905-907.
  • 5. Lobato, F. C., Lima, C. G., Assis, R. A., Pires, P. S., Silva, R. O., Salvarani, F. M., Carmo, A. O., Contigli, C., & Kalapothakis, E., (2010). Potency against enterotoxemia of a recombinant Clostridium perfringens type D epsilon toxoid in ruminants. Vaccine, 28(38), 6125-6127.
  • 6. Takeyama, N., Kiyono, H. & Yuki, Y. (2015). Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Therapeutic Advances in Vaccines. 3(5-6), 139-154.
  • 7. Hefferon, K. L. (2010). The mucosal immune response to plant-derived vaccines. Pharmaceutical Research, 27(10), 2040-2042.
  • 8. Schillberg, S., Raven N., Spiegel, H., Rasche, S. & Buntru, M. (2019). Critical analysis of the commercial potential of plants for the production of recombinant proteins. Frontiers in Plant Science, 10, 720.
  • 9. Daniell, H., Rai, V. & Xiao, Y. (2019). Cold chain and virus‐free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnology Journal, 17(7), 1357-1368.
  • 10. Mason, H. S., Lam, D. & Arntzen, C. J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proceedings of the National Academy of Sciences, 89(24), 11745-11749.
  • 11. Tuboly, T., Yu, W., Bailey, A., Degrandis, S., Du, S., Erickson, L. & Nagy, E. (2000). Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine, 18(19), 2023-2028.
  • 12. Khandelwal, A., Sita, G. L., & Shaila, M. (2003). Oral immunization of cattle with hemagglutinin protein of rinderpest virus expressed in transgenic peanut induces specific immune responses.Vaccine, 21(23), 3282-3289.
  • 13. Filgueira, D. P., Zamorano, P. I., Domınguez, M., Taboga, O., Zajac, M. D. M., Puntel, M., Romera, S. A., Morris, T. J., Borca, M., & Sadir, A. M. (2003). Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine, 21(27-30), 4201-4209.
  • 14. Varsani, A., Williamson, A. L., Rose, R. C., Jaffer, M., & Rybicki, E. P. (2003). Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Archives of Virology, 148(9), 1771-1786.
  • 15. Lamphear, B. J., Jilka, J. M., Kesl, L., Welter, M., Howard, J. A., & Streatfield, S. J. (2004). A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine, 22(19), 2420-2424.
  • 16. Zhou, J.-Y., Cheng, L.Q., Zheng, X.J., Wu, J.X., Shang, S.B., Wang, J.Y., & Chen, J.G. (2004). Generation of the transgenic potato expressing full-length spike protein of infectious bronchitis virus. Journal of Biotechnology, 111(2), 121-130.
  • 17. Koya, V., Moayeri, M., Leppla, S. H., & Danielli, H. (2005). Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infection and Immunity, 73(12), 8266-8274.
  • 18. Thanavala, Y., Mahoney, M., Pal, S., Scott, A., Richter, L., Natarajan, N., Goodwin, P., Arntzen, C. J. & Mason, H. S. (2005). Immunogenicity in humans of an edible vaccine for hepatitis B. Proceedings of the National Academy of Sciences, 102(9), 3378-3382.
  • 19. Guerrero-Andrade, O., Loza-Rubio, E., Olivera-Flores, T., Fehérvári-Bone, T., & Gómez-Lim, M. A. (2006). Expression of the Newcastle disease virus fusion protein in transgenic maize and immunological studies. Transgenic Research, 15(4), 455-463.
  • 20. Joensuu, J., Verdonck, F., Ehrström, A., Peltola, M., Siljander-Rasi, H., Nuutila, A.M., Oksman-Caldentey, K.M., Teeri, T., Cox, E., & B. Goddeeris (2006). F4 (K88) fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets. Vaccine, 24(13), 2387-2394.
  • 21. Kohl, T., Hitzeroth, I., Stewart, D., Varsani, A., Govan, V., Christensen, N., Williamson, A.L. & Rybicki, E. (2006). Plant-produced cottontail rabbit papillomavirus L1 protein protects against tumor challenge: a proof-of-concept study. Clinical and Vaccine Immunology, 13(8), 845-853.
  • 22. Wu, J., Yu, L., Li, L., Hu, J., Zhou, J., & Zhou, X. (2007). Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnology Journal, 5(5), 570-578.
  • 23. Huang, Z., LePore, K., Elkin, G., Thanavala, Y., & Mason, H. S. (2008). High‐yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnology Journal, 6(2), 202-209.
  • 24. D’Aoust, M. A., Lavoie, P. O., Couture, M. M. J., Trépanier, S., Guay, J. M., Dargis, M., Mongrand, S., Landry, N., Ward, B. J. & Vézina, L. P. (2008). Influenza virus‐like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnology Journal, 6(9), 930-940.
  • 25. Rosales-Mendoza, S., Soria-Guerra, R. E., López-Revilla, R., Moreno-Fierros, L., & Alpuche-Solís, Á. G. (2008). Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Reports, 27(1), 79-84.
  • 26. Santi, L., Batchelor, L., Huang, Z., Hjelm, B., Kilbourne, J., Arntzen, C. J., Chen, Q., & Mason, H. S. (2008). An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine, 26(15), 1846-1854.
  • 27. Kalthoff, D., Giritch, A., Geisler, K., Bettmann, U., Klimyuk, V., Hehnen, H.R., Gleba, Y. & Beer, M. (2010). Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. Journal of Virology, 84(22), 12002-12010.
  • 28. Shoji, Y., Farrance, C. E., Bautista, J., Bi, H., Musiychuk, K., Horsey, A., Park, H., Jaje, J., Green, B. J., & Shamloul, M. (2012). A plant‐based system for rapid production of influenza vaccine antigens. Influenza and Other Respiratory Viruses, 6(3), 204-210.
  • 29. Firsov, A., Tarasenko, I., Mitiouchkina, T., Ismailova, N., Shaloiko, L., Vainstein, A. & Dolgov, S. (2015). High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Molecular Biotechnology, 57(7), 653-661.
  • 30. Vaquero, C., Sack, M., Chandler, J., Drossard, J., Schuster, F., Monecke, M., Schillberg, S. & Fischer, R. (1999). Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proceedings of the National Academy of Sciences, 96(20), 11128-11133.
  • 31. Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stöger, E., Drossard, J., Christou, P., Fischer, R. & Perrin, Y. (1999). Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Research, 8(6), 441-449.
  • 32. Stöger, E., Vaquero, C., Torres, E., Sack, M., Nicholson, L., Drossard, J., Williams, S., Keen, D., Perrin, Y. & Christou P. (2000). Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Molecular Biology, 42(4), 583-590.
  • 33. Brodzik, R., Glogowska, M., Bandurska, K., Okulicz, M., Deka, D., Ko, K., Van der Linden J., Leusen, J. H., Pogrebnyak, N. & Golovkin, M. (2006). Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proceedings of the National Academy of Sciences, 103(23), 8804-8809.
  • 34. Floss, D. M., Sack, M., Stadlmann, J., Rademacher, T., Scheller, J., Stöger, E., Fischer, R. & Conrad, U. (2008). Biochemical and functional characterization of anti‐HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnology Journal, 6(4), 379-391.
  • 35. Huang, Z., Phoolcharoen, W., Lai, H., Piensook, K., Cardineau, G., Zeitlin, L., Whaley, K. J., Arntzen, C. J., Mason, H. S. & Chen, Q. (2010). High‐level rapid production of full‐size monoclonal antibodies in plants by a single‐vector DNA replicon system. Biotechnology and Bioengineering, 106(1), 9-17.
  • 36. Lai, H., He, J., Engle, M., Diamond, M. S. & Chen, Q. (2012). Robust production of virus‐like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnology Journal, 10(1), 95-104.
  • 37. Laere, E., Ling, A. P. K., Wong, Y. P., Koh, R. Y., Mohd Lila, M. A. & Hussein, S. (2016). Plant-Based Vaccines: Production and Challenges. Journal of Botany. Article ID 4928637
  • 38. Naderi, S. & Fakheri, B. (2015). Overview of plant-based vaccines. Research Journal of Fisheries and Hydrobiology, 10(10), 275-289.
  • 39. Molina, A., Hervás‐Stubbs, S., Daniell, H., Mingo‐Castel, A. M. & Veramendi, J. (2004). High‐yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnology Journal, 2(2), 141-153.
  • 40. Kanagaraj, A. P., Verma, D. & Daniell, H. (2011). Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Molecular Biology, 76(3-5), 323.
  • 41. Loza-Rubio, E., Rojas, E., Gomez, L., Olivera, M. & Gomez-Lim, M. (2008). Development of an edible rabies vaccine in maize using the Vnukovo strain. Developments in Biologicals, 131, 477-482.
  • 42. Stewart Jr, C. N. (2016). Plant biotechnology and genetics: principles, techniques, and applications, John Wiley & Sons. Inc Publication, 10, 245-254.
  • 43. Chen, Q. & H. Lai (2015). Gene delivery into plant cells for recombinant protein production. BioMed Research International, Article ID 932161.
  • 44. Liu, W., Yuan, J. S. & Stewart Jr., C. N. (2013). Advanced genetic tools for plant biotechnology. Nature Reviews Genetics, 14(11), 781-793.
  • 45. Yu, J. & Langridge, W. H. (2000). Novel approaches to oral vaccines: delivery of antigens by edible plants. Current Infectious Disease Reports, 2(1), 73-77.
  • 46. Hefferon, K. L. (2014). DNA virus vectors for vaccine production in plants: spotlight on geminiviruses. Vaccines, 2(3), 642-653.
  • 47. Shanmugaraj, B., Siriwattananon, K., Wangkanont, K. & W. Phoolcharoen (2020). Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol, 38(1), 10-18.
  • 48. Buyel, J. F. (2018). Plant molecular farming–Integration and exploitation of side streams to achieve sustainable biomanufacturing. Frontiers in Plant Science, 9, 1893.
  • 49. Huang, T.K. & McDonald, K. A. (2009). Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochemical Engineering Journal, 45(3), 168-184.
  • 50. Jeon, J. M., Ahn, N. Y., Son, B. H., Kim, C. Y., Han, C.D., Kim, G.D., Gal, S. W. & Lee, S.H. (2007). Efficient transient expression and transformation of PEG-mediated gene uptake into mesophyll protoplasts of pepper (Capsicum annuum L.). Plant Cell, Tissue and Organ Culture, 88(2), 225-232.
  • 51. Santarem, E., Trick, H., Essig, J. & Finer, J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Reports, 17(10), 752-759.
  • 52. Tacket, C. O., Mason, H. S., Losonsky, G., Estes, M. K., Levine, M. M. &. Arntzen, C. J (2000). Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. The Journal of Infectious Diseases, 182(1), 302-305.
  • 53. Yuki, Y., Mejima, M., Kurokawa, S., Hiroiwa, T., Takahashi, Y., Tokuhara, D., Nochi, T., Katakai, Y., Kuroda, M. & Takeyama, N. (2013). Induction of toxin‐specific neutralizing immunity by molecularly uniform rice‐based oral cholera toxin B subunit vaccine without plant‐associated sugar modification. Plant Biotechnology Journal, 11(7), 799-808.
  • 54. Sharma, M. & B. Sood (2011). A banana or a syringe: journey to edible vaccines. World Journal of Microbiology and Biotechnology, 27(3), 471-477.
  • 55. Faye, L. & V. Gomord (2010). Success stories in molecular farming—a brief overview. Plant Biotechnology Journal, 8(5), 525-528.
Primary Language tr
Subjects Agricultural, Engineering
Journal Section Review
Authors

Orcid: 0000-0002-6772-4316
Author: Aybüke OKAY
Institution: Ankara Üniversitesi
Country: Turkey


Orcid: 0000-0002-1670-9677
Author: Semra SOYDAM AYDIN (Primary Author)
Institution: Hacettepe Üniversitesi
Country: Turkey


Orcid: 0000-0002-0843-8299
Author: İlker BÜYÜK
Institution: Ankara Üniversitesi
Country: Turkey


Orcid: 0000-0003-3474-9493
Author: Emine SÜMER ARAS
Institution: Ankara Üniversitesi
Country: Turkey


Dates

Application Date : January 1, 2021
Acceptance Date : March 16, 2021
Publication Date : April 15, 2021

APA Okay, A , Soydam Aydın, S , Büyük, İ , Sümer Aras, E . (2021). Bitkisel türevli aşılar . Biyolojik Çeşitlilik ve Koruma , 14 (1) , 167-174 . Retrieved from https://dergipark.org.tr/en/pub/biodicon/issue/59796/850360