Research Article
BibTex RIS Cite

Combinational synergistic role of thymoquinone and celastrol in colon carcinoma cell line

Year 2024, Volume: 17 Issue: 3, 190 - 197
https://doi.org/10.46309/biodicon.2024.1445711

Abstract

Colon carcinoma (HCT-116) cells are highly aggressive cell line and cell proliferation of colon carcinoma cells are rapid and uncontrolled. Treatment of colorectal cancer cells can be achieved through the use of chemotherapeutic agents. However, the treatment with a single type of chemical may require high dosages, which leads to toxicity. To resolve this issue, synergistic combinational treatment of Thymoquinone (TQ) and Celastrol (CLS) can be promising strategy to reduce proliferation and cell viability of the colorectal cancer cells. Evaluation of cell viability and cell growth were determined fort he combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested and the results revealed strong synergistic effect against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Compared to the alone treatments of the both drugs, overproduction of ROS in combinational treatments supported the results obtained from cell viability. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs.

References

  • [1] Choudhury, D., Ganguli, A., Dastidar, D. G., Acharya, B. R., Das, A., & Chakrabarti, G. (2013). Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6), 1297-1309. doi: 10.1016/j.biochi.2013.02.010
  • [2] M. A., Tania, M., Fu, S. Y., & Fu, J. J. (2017b). Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 8(31), 51907-51919. doi: 10.18632/oncotarget.17206
  • [3] Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants, 12(2), 14. doi:10.3390/antiox12020433
  • [4] Majdalawieh, A. F., & Fayyad, M. W. (2015b). Immunomodulatory and anti-inflammatory action of nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023
  • [5] Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med, 82(1-2), 8-16. doi:10.1055/s-0035-1557838
  • [6] Hao, D. C., He, C. N., Shen, J., & Xiao, P. G. (2017). Anticancer chemodiversity of ranunculaceae medicinal plants: Molecular mechanisms and functions. Current Genomics, 18(1), 39-59. doi:10.2174/1389202917666160803151752
  • [7] El-Mahdy, M. A., Zhu, Q. Z., Wang, Q. E., Wani, G., & Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia hl-60 cells. International Journal of Cancer, 117(3), 409-417. doi:10.1002/ijc.21205
  • [8] El-Baba, C., Mahadevan, V., Fahlbusch, F. B., Mohan, S. S., Rau, T. T., Gali-Muhtasib, H., & Schneider-Stock, R. (2014). Thymoquinone-induced conformational changes of pak1 interrupt prosurvival mek-erk signaling in colorectal cancer. Molecular Cancer, 13, 14. doi:10.1186/1476-4598-13-201
  • [9] Kundu, J., Choi, B. Y., Jeong, C. H., Kundu, J. K., & Chun, K. S. (2014). Thymoquinone induces apoptosis in human colon cancer hct116 cells through inactivation of stat3 by blocking jak2- and src-mediated phosphorylation of egf receptor tyrosine kinase. Oncology Reports, 32(2), 821-828. doi:10.3892/or.2014.3223.
  • [10] Wang, C., Dai, S., Zhao, X. T., Zhang, Y. F., Gong, L. H., Fu, K., Li, Y. X. (2023). Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomedicine & Pharmacotherapy, 163. doi: 10.1016/j.biopha.2023.114882
  • [11] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
  • [12] Tang, B. F., Xu, D., Zhao, Y. L., Liang, G. G., Chen, X., & Wang, L. (2018b). Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anti-Cancer Drugs, 29(6), 530-538. doi: 10.1097/cad.0000000000000621
  • [13] Altundağ, E.M., Özbilenler, C., Ustürk, S., Kerküklü, N.R., Afshani, M. & Yilmaz, E. (2021). Metal-based curcumin and quercetin complexes: Cell viability, ROS production and antioxidant activity. Journal of Molecular Structure, 1245, 131107. doi: 10.1016/j.molstruc.2021.131107
  • [14] Ustürk, S., Yilmaz, E. & Mutlu Altundağ, E. (2024). Low fouling and pH-responsive poly (N-vinyl imidazole)/poly (ethylene glycol) methacrylate copolymer gels for colon targeted diclofenac sodium delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-14. doi: 10.1080/00914037.2024.2325960
  • [15] Jiang, Z. T., Cao, Q. Y., Dai, G. L., Wang, J. C., Liu, C. D., Lv, L. Y., & Pan, J. H. (2019). Celastrol inhibits colorectal cancer through tgf-β1/smad signaling. Oncotargets and Therapy, 12, 509-518. doi:10.2147/ott.s 187817
  • [16] H. L., Han, Y. J., & Jin, X. H. (2019). Celastrol inhibits colon cancer cell proliferation by downregulating mir-21 and pi3k/akt/gsk-3β pathway. International Journal of Clinical and Experimental Pathology, 12(3), 808-816
  • [17] Eid, E. E. M., Almaiman, A. A., Alshehade, S. A., Alsalemi, W., Kamran, S., Suliman, F. O., & Alshawsh, M. A. (2023). Characterization of thymoquinone-sulfobutylether-β-cyclodextrin inclusion complex for anticancer applications. Molecules, 28(10), 18. doi:10.3390/molecules28104096
  • [18] El-Far, A. H., Godugu, K., Noreldin, A. E., Saddiq, A. A., Almaghrabi, O. A., Al Jaouni, S. K., & Mousa, S. A. (2021). Thymoquinone and costunolide induce apoptosis of both proliferative and doxorubicin-induced-senescent colon and breast cancer cells. Integrative Cancer Therapies, 20, 20. doi:10.1177/15347354211035450
  • [19] Fröhlich, T., Ndreshkjana, B., Muenzner, J. K., Reiter, C., Hofmeister, E., Mederer, S.,Tsogoeva, S. B. (2021). Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer (vol 12, pg 226, 2017). Chemmedchem, 16(9), 1513-1513. doi: 10.1002/cmdc.202100088
  • [20] Raut, P. K., Lee, H. S., Joo, S. H., & Chun, K. S. (2021). Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of jak2/stat3 signaling pathway in human melanoma cells. Food and Chemical Toxicology, 157. doi: 10.1016/j.fct.2021.112604
  • [21] Li, F., Rajendran, P., & Sethi, G. (2010). Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. British Journal of Pharmacology, 161(3), 541-554. doi:10.1111/j.1476-5381.2010.00874.x
  • [22] Yang, H. J., Chen, D., Cui, Q. Z. C., Yuan, X., & Dou, Q. P. (2006). Celastrol, a triterpene extracted from the chinese "Thunder of god vine," Is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 66(9), 4758-4765. doi: 10.1158/0008-5472.can-05-4529
  • [23] Lin, L. J., Sun, Y., Wang, D. X., Zheng, S. H., Zheng, J., & Zheng, C. Q. (2016). Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Frontiers in Pharmacology, 6, 14. doi:10.3389/fphar.2015.00320
  • [24] Gao, Y. F., Zhou, S., Pang, L. Z., Yang, J. C., Li, H. J., Huo, X. W., & Qian, S. Y. (2019). Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radical Research, 53(3), 324-334. doi:10.1080/10715762.2019.1575512
  • [25] Venkatesha, S. H., & Moudgil, K. D. (2016). Celastrol and its role in controlling chronic diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.), Anti-inflammatory nutraceuticals and chronic diseases (Vol. 928, pp. 267-289). Cham: Springer International Publishing Ag.
  • [26] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
  • [27] Ning, J. Y., Ma, B., Huang, J. Y., Han, L., Shao, Y. H. & Wang, F. Y. (2024). Integrated network pharmacology and metabolomics reveal the action mechanisms of vincristine combined with celastrol against colon cancer. Journal of Pharmaceutical and Biomedical Analysis, 239, 115883.doi: 10.1016/j.jpba.2023.115883
  • [28] Mutlu Altundağ, E., Jannuzzi, A. T., Özbilenler, C., Ustürk, S. & Altınoğlu, G. (2024). Synergistic role of thymoquinone and 5-fluorouracil in U-251MG glioblastoma cell line. Turkish Journal of Biochemistry, 49(1), 82-89. doi: 10.1515/tjb-2023-0150
  • [29] Özkoç, M., Özbal, B. S., & Altundağ, E.M. (2022). Evaluation of antiproliferative effect of cisplatin and thymoquinone combination on MCF-7 cells. Biological Diversity and Conservation, 348, 355.doi: 10.46309/biodicon.2022.1168903
  • [30] Hamed, R. A., & Talib, W. H. (2024). Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. Pharmacia, 71, 1-19.doi: 10.3897/pharmacia.71.e117997
  • [31] Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., Quiles, J. L., Forbes-Hernández, T. Y., & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol., 156, 112484. doi: 10.1016/j.fct.2021.112484.
  • [32] Wang, L., Tang, L., Yao, C., Liu, C., & Shu, Y. (2021). The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 Cells. Journal of Immunology Research. doi: 10.1155/2021/5532269

Combinational Synergistic Role of Thymoquinone and Celastrol in Colon Carcinoma Cell Line

Year 2024, Volume: 17 Issue: 3, 190 - 197
https://doi.org/10.46309/biodicon.2024.1445711

Abstract

Colon carcinoma (HCT-116) cells are highly aggressive cell line and cell proliferation of colon carcinoma cells are rapid and uncontrolled. Treatment of colorectal cancer cells can be achieved through the use of chemotherapeutic agents. However, the treatment with a single type of chemical may require high dosages, which leads to toxicity. To resolve this issue, synergistic combinational treatment of Thymoquinone (TQ) and Celastrol (CLS) can be promising strategy to reduce proliferation and cell viability of the colorectal cancer cells. Evaluation of cell viability and cell growth were determined fort he combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested and the results revealed strong synergistic effect against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Compared to the alone treatments of the both drugs, overproduction of ROS in combinational treatments supported the results obtained from cell viability. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs.

Thanks

Dear Editor, Please find uploaded our manuscript entitled “Combinational Synergistic Role of Thymoquinone and Celastrol in Colon Carcinoma Cell Line” co-authored by Ergül Mutlu Altundağ, Selma Ustürk, Cahit Özbilenler, Emircan Sezer, Dilara Kısaçam, Dilem Ömerağa, Bartu Obut, Sıddıka Nur Kardaş.We would like to submit our article for publication in Biological Diversity and Conservation. In this article, we report original work on cell viability and synergistic combinations of Thymoquinone and Celastrol. Evaluation of cell viability and cell growth were determined for the combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs. We hope that you will consider our manuscript for evaluation to be published in Biological Diversity and Conservation. Yours sincerely, Correspondence Assoc. Prof. Dr. Ergul Mutlu Altundağ Department of Biochemistry Faculty of Medicine Eastern Mediterranean University North Cyprus via Mersin 10, 99628, Turkey email: ergul.altundag@emu.edu.tr

References

  • [1] Choudhury, D., Ganguli, A., Dastidar, D. G., Acharya, B. R., Das, A., & Chakrabarti, G. (2013). Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6), 1297-1309. doi: 10.1016/j.biochi.2013.02.010
  • [2] M. A., Tania, M., Fu, S. Y., & Fu, J. J. (2017b). Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 8(31), 51907-51919. doi: 10.18632/oncotarget.17206
  • [3] Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants, 12(2), 14. doi:10.3390/antiox12020433
  • [4] Majdalawieh, A. F., & Fayyad, M. W. (2015b). Immunomodulatory and anti-inflammatory action of nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023
  • [5] Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med, 82(1-2), 8-16. doi:10.1055/s-0035-1557838
  • [6] Hao, D. C., He, C. N., Shen, J., & Xiao, P. G. (2017). Anticancer chemodiversity of ranunculaceae medicinal plants: Molecular mechanisms and functions. Current Genomics, 18(1), 39-59. doi:10.2174/1389202917666160803151752
  • [7] El-Mahdy, M. A., Zhu, Q. Z., Wang, Q. E., Wani, G., & Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia hl-60 cells. International Journal of Cancer, 117(3), 409-417. doi:10.1002/ijc.21205
  • [8] El-Baba, C., Mahadevan, V., Fahlbusch, F. B., Mohan, S. S., Rau, T. T., Gali-Muhtasib, H., & Schneider-Stock, R. (2014). Thymoquinone-induced conformational changes of pak1 interrupt prosurvival mek-erk signaling in colorectal cancer. Molecular Cancer, 13, 14. doi:10.1186/1476-4598-13-201
  • [9] Kundu, J., Choi, B. Y., Jeong, C. H., Kundu, J. K., & Chun, K. S. (2014). Thymoquinone induces apoptosis in human colon cancer hct116 cells through inactivation of stat3 by blocking jak2- and src-mediated phosphorylation of egf receptor tyrosine kinase. Oncology Reports, 32(2), 821-828. doi:10.3892/or.2014.3223.
  • [10] Wang, C., Dai, S., Zhao, X. T., Zhang, Y. F., Gong, L. H., Fu, K., Li, Y. X. (2023). Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomedicine & Pharmacotherapy, 163. doi: 10.1016/j.biopha.2023.114882
  • [11] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
  • [12] Tang, B. F., Xu, D., Zhao, Y. L., Liang, G. G., Chen, X., & Wang, L. (2018b). Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anti-Cancer Drugs, 29(6), 530-538. doi: 10.1097/cad.0000000000000621
  • [13] Altundağ, E.M., Özbilenler, C., Ustürk, S., Kerküklü, N.R., Afshani, M. & Yilmaz, E. (2021). Metal-based curcumin and quercetin complexes: Cell viability, ROS production and antioxidant activity. Journal of Molecular Structure, 1245, 131107. doi: 10.1016/j.molstruc.2021.131107
  • [14] Ustürk, S., Yilmaz, E. & Mutlu Altundağ, E. (2024). Low fouling and pH-responsive poly (N-vinyl imidazole)/poly (ethylene glycol) methacrylate copolymer gels for colon targeted diclofenac sodium delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-14. doi: 10.1080/00914037.2024.2325960
  • [15] Jiang, Z. T., Cao, Q. Y., Dai, G. L., Wang, J. C., Liu, C. D., Lv, L. Y., & Pan, J. H. (2019). Celastrol inhibits colorectal cancer through tgf-β1/smad signaling. Oncotargets and Therapy, 12, 509-518. doi:10.2147/ott.s 187817
  • [16] H. L., Han, Y. J., & Jin, X. H. (2019). Celastrol inhibits colon cancer cell proliferation by downregulating mir-21 and pi3k/akt/gsk-3β pathway. International Journal of Clinical and Experimental Pathology, 12(3), 808-816
  • [17] Eid, E. E. M., Almaiman, A. A., Alshehade, S. A., Alsalemi, W., Kamran, S., Suliman, F. O., & Alshawsh, M. A. (2023). Characterization of thymoquinone-sulfobutylether-β-cyclodextrin inclusion complex for anticancer applications. Molecules, 28(10), 18. doi:10.3390/molecules28104096
  • [18] El-Far, A. H., Godugu, K., Noreldin, A. E., Saddiq, A. A., Almaghrabi, O. A., Al Jaouni, S. K., & Mousa, S. A. (2021). Thymoquinone and costunolide induce apoptosis of both proliferative and doxorubicin-induced-senescent colon and breast cancer cells. Integrative Cancer Therapies, 20, 20. doi:10.1177/15347354211035450
  • [19] Fröhlich, T., Ndreshkjana, B., Muenzner, J. K., Reiter, C., Hofmeister, E., Mederer, S.,Tsogoeva, S. B. (2021). Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer (vol 12, pg 226, 2017). Chemmedchem, 16(9), 1513-1513. doi: 10.1002/cmdc.202100088
  • [20] Raut, P. K., Lee, H. S., Joo, S. H., & Chun, K. S. (2021). Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of jak2/stat3 signaling pathway in human melanoma cells. Food and Chemical Toxicology, 157. doi: 10.1016/j.fct.2021.112604
  • [21] Li, F., Rajendran, P., & Sethi, G. (2010). Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. British Journal of Pharmacology, 161(3), 541-554. doi:10.1111/j.1476-5381.2010.00874.x
  • [22] Yang, H. J., Chen, D., Cui, Q. Z. C., Yuan, X., & Dou, Q. P. (2006). Celastrol, a triterpene extracted from the chinese "Thunder of god vine," Is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 66(9), 4758-4765. doi: 10.1158/0008-5472.can-05-4529
  • [23] Lin, L. J., Sun, Y., Wang, D. X., Zheng, S. H., Zheng, J., & Zheng, C. Q. (2016). Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Frontiers in Pharmacology, 6, 14. doi:10.3389/fphar.2015.00320
  • [24] Gao, Y. F., Zhou, S., Pang, L. Z., Yang, J. C., Li, H. J., Huo, X. W., & Qian, S. Y. (2019). Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radical Research, 53(3), 324-334. doi:10.1080/10715762.2019.1575512
  • [25] Venkatesha, S. H., & Moudgil, K. D. (2016). Celastrol and its role in controlling chronic diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.), Anti-inflammatory nutraceuticals and chronic diseases (Vol. 928, pp. 267-289). Cham: Springer International Publishing Ag.
  • [26] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
  • [27] Ning, J. Y., Ma, B., Huang, J. Y., Han, L., Shao, Y. H. & Wang, F. Y. (2024). Integrated network pharmacology and metabolomics reveal the action mechanisms of vincristine combined with celastrol against colon cancer. Journal of Pharmaceutical and Biomedical Analysis, 239, 115883.doi: 10.1016/j.jpba.2023.115883
  • [28] Mutlu Altundağ, E., Jannuzzi, A. T., Özbilenler, C., Ustürk, S. & Altınoğlu, G. (2024). Synergistic role of thymoquinone and 5-fluorouracil in U-251MG glioblastoma cell line. Turkish Journal of Biochemistry, 49(1), 82-89. doi: 10.1515/tjb-2023-0150
  • [29] Özkoç, M., Özbal, B. S., & Altundağ, E.M. (2022). Evaluation of antiproliferative effect of cisplatin and thymoquinone combination on MCF-7 cells. Biological Diversity and Conservation, 348, 355.doi: 10.46309/biodicon.2022.1168903
  • [30] Hamed, R. A., & Talib, W. H. (2024). Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. Pharmacia, 71, 1-19.doi: 10.3897/pharmacia.71.e117997
  • [31] Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., Quiles, J. L., Forbes-Hernández, T. Y., & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol., 156, 112484. doi: 10.1016/j.fct.2021.112484.
  • [32] Wang, L., Tang, L., Yao, C., Liu, C., & Shu, Y. (2021). The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 Cells. Journal of Immunology Research. doi: 10.1155/2021/5532269
There are 32 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Research Articles
Authors

Ergul Mutlu Altundag 0000-0001-5355-4654

Selma Ustürk 0000-0003-2507-2951

Cahit Özbilenler 0000-0003-4494-3310

Emircan Sezer 0009-0003-8153-592X

Dilara Kısaçam 0000-0003-4152-9798

Dilem Ömerağa 0009-0006-2008-7969

Bartu Obut 0009-0004-0311-4852

Sıddıka Nur Kardaş 0000-0003-4561-085X

Early Pub Date September 13, 2024
Publication Date
Submission Date March 1, 2024
Acceptance Date April 17, 2024
Published in Issue Year 2024 Volume: 17 Issue: 3

Cite

APA Mutlu Altundag, E., Ustürk, S., Özbilenler, C., Sezer, E., et al. (2024). Combinational Synergistic Role of Thymoquinone and Celastrol in Colon Carcinoma Cell Line. Biological Diversity and Conservation, 17(3), 190-197. https://doi.org/10.46309/biodicon.2024.1445711

❖  Abstracted-Indexed in
Web of Science {Zoological Records Indexed] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Exeter University; Eskişehir Technical University Library; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University..

❖ The article processing is free.

❖ Web of Science-Clarivate Analytics, Zoological Record
❖ This journal is a CrossRef;10.46309/biodicon. member

❖ Please visit ” http:// www.biodicon.com“ ; "https://dergipark.org.tr/en/pub/biodicon"   for instructions about articles and all of the details about journal


❖  Correspondance Adres: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-posta / E-mail: biodicon@gmail.com;
Web Address: http://www.biodicon.com;   https://dergipark.org.tr/en/pub/biodicon
❖ Biological Diversity and Conservation/ Biyolojik Çeşitlilik ve Koruma
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Start Date Published 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma-Available online at www.biodicon.com/All rights reserved
Publisher : ERSİN YÜCEL (https://www.ersinyucel.com.tr/)
❖ This journal is published three numbers in a year. Printed in Eskişehir/Türkiye.
❖ All sorts of responsibilities of the articles published in this journal are belonging to the authors
Editör / Editor-In-Chief : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578