Combinational synergistic role of thymoquinone and celastrol in colon carcinoma cell line
Year 2024,
Volume: 17 Issue: 3, 190 - 197
Ergul Mutlu Altundag
,
Selma Ustürk
,
Cahit Özbilenler
,
Emircan Sezer
,
Dilara Kısaçam
,
Dilem Ömerağa
,
Bartu Obut
,
Sıddıka Nur Kardaş
Abstract
Colon carcinoma (HCT-116) cells are highly aggressive cell line and cell proliferation of colon carcinoma cells are rapid and uncontrolled. Treatment of colorectal cancer cells can be achieved through the use of chemotherapeutic agents. However, the treatment with a single type of chemical may require high dosages, which leads to toxicity. To resolve this issue, synergistic combinational treatment of Thymoquinone (TQ) and Celastrol (CLS) can be promising strategy to reduce proliferation and cell viability of the colorectal cancer cells. Evaluation of cell viability and cell growth were determined fort he combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested and the results revealed strong synergistic effect against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Compared to the alone treatments of the both drugs, overproduction of ROS in combinational treatments supported the results obtained from cell viability. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs.
References
- [1] Choudhury, D., Ganguli, A., Dastidar, D. G., Acharya, B. R., Das, A., & Chakrabarti, G. (2013). Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6), 1297-1309. doi: 10.1016/j.biochi.2013.02.010
- [2] M. A., Tania, M., Fu, S. Y., & Fu, J. J. (2017b). Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 8(31), 51907-51919. doi: 10.18632/oncotarget.17206
- [3] Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants, 12(2), 14. doi:10.3390/antiox12020433
- [4] Majdalawieh, A. F., & Fayyad, M. W. (2015b). Immunomodulatory and anti-inflammatory action of nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023
- [5] Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med, 82(1-2), 8-16. doi:10.1055/s-0035-1557838
- [6] Hao, D. C., He, C. N., Shen, J., & Xiao, P. G. (2017). Anticancer chemodiversity of ranunculaceae medicinal plants: Molecular mechanisms and functions. Current Genomics, 18(1), 39-59. doi:10.2174/1389202917666160803151752
- [7] El-Mahdy, M. A., Zhu, Q. Z., Wang, Q. E., Wani, G., & Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia hl-60 cells. International Journal of Cancer, 117(3), 409-417. doi:10.1002/ijc.21205
- [8] El-Baba, C., Mahadevan, V., Fahlbusch, F. B., Mohan, S. S., Rau, T. T., Gali-Muhtasib, H., & Schneider-Stock, R. (2014). Thymoquinone-induced conformational changes of pak1 interrupt prosurvival mek-erk signaling in colorectal cancer. Molecular Cancer, 13, 14. doi:10.1186/1476-4598-13-201
- [9] Kundu, J., Choi, B. Y., Jeong, C. H., Kundu, J. K., & Chun, K. S. (2014). Thymoquinone induces apoptosis in human colon cancer hct116 cells through inactivation of stat3 by blocking jak2- and src-mediated phosphorylation of egf receptor tyrosine kinase. Oncology Reports, 32(2), 821-828. doi:10.3892/or.2014.3223.
- [10] Wang, C., Dai, S., Zhao, X. T., Zhang, Y. F., Gong, L. H., Fu, K., Li, Y. X. (2023). Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomedicine & Pharmacotherapy, 163. doi: 10.1016/j.biopha.2023.114882
- [11] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
- [12] Tang, B. F., Xu, D., Zhao, Y. L., Liang, G. G., Chen, X., & Wang, L. (2018b). Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anti-Cancer Drugs, 29(6), 530-538. doi: 10.1097/cad.0000000000000621
- [13] Altundağ, E.M., Özbilenler, C., Ustürk, S., Kerküklü, N.R., Afshani, M. & Yilmaz, E. (2021). Metal-based curcumin and quercetin complexes: Cell viability, ROS production and antioxidant activity. Journal of Molecular Structure, 1245, 131107. doi: 10.1016/j.molstruc.2021.131107
- [14] Ustürk, S., Yilmaz, E. & Mutlu Altundağ, E. (2024). Low fouling and pH-responsive poly (N-vinyl imidazole)/poly (ethylene glycol) methacrylate copolymer gels for colon targeted diclofenac sodium delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-14. doi: 10.1080/00914037.2024.2325960
- [15] Jiang, Z. T., Cao, Q. Y., Dai, G. L., Wang, J. C., Liu, C. D., Lv, L. Y., & Pan, J. H. (2019). Celastrol inhibits colorectal cancer through tgf-β1/smad signaling. Oncotargets and Therapy, 12, 509-518. doi:10.2147/ott.s 187817
- [16] H. L., Han, Y. J., & Jin, X. H. (2019). Celastrol inhibits colon cancer cell proliferation by downregulating mir-21 and pi3k/akt/gsk-3β pathway. International Journal of Clinical and Experimental Pathology, 12(3), 808-816
- [17] Eid, E. E. M., Almaiman, A. A., Alshehade, S. A., Alsalemi, W., Kamran, S., Suliman, F. O., & Alshawsh, M. A. (2023). Characterization of thymoquinone-sulfobutylether-β-cyclodextrin inclusion complex for anticancer applications. Molecules, 28(10), 18. doi:10.3390/molecules28104096
- [18] El-Far, A. H., Godugu, K., Noreldin, A. E., Saddiq, A. A., Almaghrabi, O. A., Al Jaouni, S. K., & Mousa, S. A. (2021). Thymoquinone and costunolide induce apoptosis of both proliferative and doxorubicin-induced-senescent colon and breast cancer cells. Integrative Cancer Therapies, 20, 20. doi:10.1177/15347354211035450
- [19] Fröhlich, T., Ndreshkjana, B., Muenzner, J. K., Reiter, C., Hofmeister, E., Mederer, S.,Tsogoeva, S. B. (2021). Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer (vol 12, pg 226, 2017). Chemmedchem, 16(9), 1513-1513. doi: 10.1002/cmdc.202100088
- [20] Raut, P. K., Lee, H. S., Joo, S. H., & Chun, K. S. (2021). Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of jak2/stat3 signaling pathway in human melanoma cells. Food and Chemical Toxicology, 157. doi: 10.1016/j.fct.2021.112604
- [21] Li, F., Rajendran, P., & Sethi, G. (2010). Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. British Journal of Pharmacology, 161(3), 541-554. doi:10.1111/j.1476-5381.2010.00874.x
- [22] Yang, H. J., Chen, D., Cui, Q. Z. C., Yuan, X., & Dou, Q. P. (2006). Celastrol, a triterpene extracted from the chinese "Thunder of god vine," Is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 66(9), 4758-4765. doi: 10.1158/0008-5472.can-05-4529
- [23] Lin, L. J., Sun, Y., Wang, D. X., Zheng, S. H., Zheng, J., & Zheng, C. Q. (2016). Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Frontiers in Pharmacology, 6, 14. doi:10.3389/fphar.2015.00320
- [24] Gao, Y. F., Zhou, S., Pang, L. Z., Yang, J. C., Li, H. J., Huo, X. W., & Qian, S. Y. (2019). Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radical Research, 53(3), 324-334. doi:10.1080/10715762.2019.1575512
- [25] Venkatesha, S. H., & Moudgil, K. D. (2016). Celastrol and its role in controlling chronic diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.), Anti-inflammatory nutraceuticals and chronic diseases (Vol. 928, pp. 267-289). Cham: Springer International Publishing Ag.
- [26] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
- [27] Ning, J. Y., Ma, B., Huang, J. Y., Han, L., Shao, Y. H. & Wang, F. Y. (2024). Integrated network pharmacology and metabolomics reveal the action mechanisms of vincristine combined with celastrol against colon cancer. Journal of Pharmaceutical and Biomedical Analysis, 239, 115883.doi: 10.1016/j.jpba.2023.115883
- [28] Mutlu Altundağ, E., Jannuzzi, A. T., Özbilenler, C., Ustürk, S. & Altınoğlu, G. (2024). Synergistic role of thymoquinone and 5-fluorouracil in U-251MG glioblastoma cell line. Turkish Journal of Biochemistry, 49(1), 82-89. doi: 10.1515/tjb-2023-0150
- [29] Özkoç, M., Özbal, B. S., & Altundağ, E.M. (2022). Evaluation of antiproliferative effect of cisplatin and thymoquinone combination on MCF-7 cells. Biological Diversity and Conservation, 348, 355.doi: 10.46309/biodicon.2022.1168903
- [30] Hamed, R. A., & Talib, W. H. (2024). Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. Pharmacia, 71, 1-19.doi: 10.3897/pharmacia.71.e117997
- [31] Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., Quiles, J. L., Forbes-Hernández, T. Y., & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol., 156, 112484. doi: 10.1016/j.fct.2021.112484.
- [32] Wang, L., Tang, L., Yao, C., Liu, C., & Shu, Y. (2021). The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 Cells. Journal of Immunology Research. doi: 10.1155/2021/5532269
Combinational Synergistic Role of Thymoquinone and Celastrol in Colon Carcinoma Cell Line
Year 2024,
Volume: 17 Issue: 3, 190 - 197
Ergul Mutlu Altundag
,
Selma Ustürk
,
Cahit Özbilenler
,
Emircan Sezer
,
Dilara Kısaçam
,
Dilem Ömerağa
,
Bartu Obut
,
Sıddıka Nur Kardaş
Abstract
Colon carcinoma (HCT-116) cells are highly aggressive cell line and cell proliferation of colon carcinoma cells are rapid and uncontrolled. Treatment of colorectal cancer cells can be achieved through the use of chemotherapeutic agents. However, the treatment with a single type of chemical may require high dosages, which leads to toxicity. To resolve this issue, synergistic combinational treatment of Thymoquinone (TQ) and Celastrol (CLS) can be promising strategy to reduce proliferation and cell viability of the colorectal cancer cells. Evaluation of cell viability and cell growth were determined fort he combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested and the results revealed strong synergistic effect against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Compared to the alone treatments of the both drugs, overproduction of ROS in combinational treatments supported the results obtained from cell viability. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs.
Thanks
Dear Editor,
Please find uploaded our manuscript entitled “Combinational Synergistic Role of Thymoquinone and Celastrol in Colon Carcinoma Cell Line” co-authored by Ergül Mutlu Altundağ, Selma Ustürk, Cahit Özbilenler, Emircan Sezer, Dilara Kısaçam, Dilem Ömerağa, Bartu Obut, Sıddıka Nur Kardaş.We would like to submit our article for publication in Biological Diversity and Conservation.
In this article, we report original work on cell viability and synergistic combinations of Thymoquinone and Celastrol. Evaluation of cell viability and cell growth were determined for the combinational and alone treatments of TQ and CLS using MTT assay. Combinational concentrations and the combination indexes of these two agents were determined by the CompuSYN software program. Half maximal inhibitory concentrations (IC50) of TQ and CLS were determined as 102 µM and 7 µM, respectively. Four different combinations of these two chemical agents were tested against HCT-116 colon cancer cells. Reactive oxygen species production was also evaluated by monitoring the production of highly fluorescent DCF from DCFH-DA. Our findings demonstrated that combinational strategy of TQ and CLS has strong synergistic activity against the HCT-116 cancer cells and it can be a promising strategy to increase the effect of the drugs. We hope that you will consider our manuscript for evaluation to be published in Biological Diversity and Conservation.
Yours sincerely,
Correspondence
Assoc. Prof. Dr. Ergul Mutlu Altundağ
Department of Biochemistry
Faculty of Medicine
Eastern Mediterranean University
North Cyprus via Mersin 10, 99628, Turkey
email: ergul.altundag@emu.edu.tr
References
- [1] Choudhury, D., Ganguli, A., Dastidar, D. G., Acharya, B. R., Das, A., & Chakrabarti, G. (2013). Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie, 95(6), 1297-1309. doi: 10.1016/j.biochi.2013.02.010
- [2] M. A., Tania, M., Fu, S. Y., & Fu, J. J. (2017b). Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 8(31), 51907-51919. doi: 10.18632/oncotarget.17206
- [3] Isaev, N. K., Genrikhs, E. E., & Stelmashook, E. V. (2023). Antioxidant thymoquinone and its potential in the treatment of neurological diseases. Antioxidants, 12(2), 14. doi:10.3390/antiox12020433
- [4] Majdalawieh, A. F., & Fayyad, M. W. (2015b). Immunomodulatory and anti-inflammatory action of nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023
- [5] Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med, 82(1-2), 8-16. doi:10.1055/s-0035-1557838
- [6] Hao, D. C., He, C. N., Shen, J., & Xiao, P. G. (2017). Anticancer chemodiversity of ranunculaceae medicinal plants: Molecular mechanisms and functions. Current Genomics, 18(1), 39-59. doi:10.2174/1389202917666160803151752
- [7] El-Mahdy, M. A., Zhu, Q. Z., Wang, Q. E., Wani, G., & Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia hl-60 cells. International Journal of Cancer, 117(3), 409-417. doi:10.1002/ijc.21205
- [8] El-Baba, C., Mahadevan, V., Fahlbusch, F. B., Mohan, S. S., Rau, T. T., Gali-Muhtasib, H., & Schneider-Stock, R. (2014). Thymoquinone-induced conformational changes of pak1 interrupt prosurvival mek-erk signaling in colorectal cancer. Molecular Cancer, 13, 14. doi:10.1186/1476-4598-13-201
- [9] Kundu, J., Choi, B. Y., Jeong, C. H., Kundu, J. K., & Chun, K. S. (2014). Thymoquinone induces apoptosis in human colon cancer hct116 cells through inactivation of stat3 by blocking jak2- and src-mediated phosphorylation of egf receptor tyrosine kinase. Oncology Reports, 32(2), 821-828. doi:10.3892/or.2014.3223.
- [10] Wang, C., Dai, S., Zhao, X. T., Zhang, Y. F., Gong, L. H., Fu, K., Li, Y. X. (2023). Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomedicine & Pharmacotherapy, 163. doi: 10.1016/j.biopha.2023.114882
- [11] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
- [12] Tang, B. F., Xu, D., Zhao, Y. L., Liang, G. G., Chen, X., & Wang, L. (2018b). Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anti-Cancer Drugs, 29(6), 530-538. doi: 10.1097/cad.0000000000000621
- [13] Altundağ, E.M., Özbilenler, C., Ustürk, S., Kerküklü, N.R., Afshani, M. & Yilmaz, E. (2021). Metal-based curcumin and quercetin complexes: Cell viability, ROS production and antioxidant activity. Journal of Molecular Structure, 1245, 131107. doi: 10.1016/j.molstruc.2021.131107
- [14] Ustürk, S., Yilmaz, E. & Mutlu Altundağ, E. (2024). Low fouling and pH-responsive poly (N-vinyl imidazole)/poly (ethylene glycol) methacrylate copolymer gels for colon targeted diclofenac sodium delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-14. doi: 10.1080/00914037.2024.2325960
- [15] Jiang, Z. T., Cao, Q. Y., Dai, G. L., Wang, J. C., Liu, C. D., Lv, L. Y., & Pan, J. H. (2019). Celastrol inhibits colorectal cancer through tgf-β1/smad signaling. Oncotargets and Therapy, 12, 509-518. doi:10.2147/ott.s 187817
- [16] H. L., Han, Y. J., & Jin, X. H. (2019). Celastrol inhibits colon cancer cell proliferation by downregulating mir-21 and pi3k/akt/gsk-3β pathway. International Journal of Clinical and Experimental Pathology, 12(3), 808-816
- [17] Eid, E. E. M., Almaiman, A. A., Alshehade, S. A., Alsalemi, W., Kamran, S., Suliman, F. O., & Alshawsh, M. A. (2023). Characterization of thymoquinone-sulfobutylether-β-cyclodextrin inclusion complex for anticancer applications. Molecules, 28(10), 18. doi:10.3390/molecules28104096
- [18] El-Far, A. H., Godugu, K., Noreldin, A. E., Saddiq, A. A., Almaghrabi, O. A., Al Jaouni, S. K., & Mousa, S. A. (2021). Thymoquinone and costunolide induce apoptosis of both proliferative and doxorubicin-induced-senescent colon and breast cancer cells. Integrative Cancer Therapies, 20, 20. doi:10.1177/15347354211035450
- [19] Fröhlich, T., Ndreshkjana, B., Muenzner, J. K., Reiter, C., Hofmeister, E., Mederer, S.,Tsogoeva, S. B. (2021). Synthesis of novel hybrids of thymoquinone and artemisinin with high activity and selectivity against colon cancer (vol 12, pg 226, 2017). Chemmedchem, 16(9), 1513-1513. doi: 10.1002/cmdc.202100088
- [20] Raut, P. K., Lee, H. S., Joo, S. H., & Chun, K. S. (2021). Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of jak2/stat3 signaling pathway in human melanoma cells. Food and Chemical Toxicology, 157. doi: 10.1016/j.fct.2021.112604
- [21] Li, F., Rajendran, P., & Sethi, G. (2010). Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. British Journal of Pharmacology, 161(3), 541-554. doi:10.1111/j.1476-5381.2010.00874.x
- [22] Yang, H. J., Chen, D., Cui, Q. Z. C., Yuan, X., & Dou, Q. P. (2006). Celastrol, a triterpene extracted from the chinese "Thunder of god vine," Is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 66(9), 4758-4765. doi: 10.1158/0008-5472.can-05-4529
- [23] Lin, L. J., Sun, Y., Wang, D. X., Zheng, S. H., Zheng, J., & Zheng, C. Q. (2016). Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Frontiers in Pharmacology, 6, 14. doi:10.3389/fphar.2015.00320
- [24] Gao, Y. F., Zhou, S., Pang, L. Z., Yang, J. C., Li, H. J., Huo, X. W., & Qian, S. Y. (2019). Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radical Research, 53(3), 324-334. doi:10.1080/10715762.2019.1575512
- [25] Venkatesha, S. H., & Moudgil, K. D. (2016). Celastrol and its role in controlling chronic diseases. In S. C. Gupta, S. Prasad, & B. B. Aggarwal (Eds.), Anti-inflammatory nutraceuticals and chronic diseases (Vol. 928, pp. 267-289). Cham: Springer International Publishing Ag.
- [26] Moreira, H., Szyjka, A., Paliszkiewicz, K., & Barg, E. (2019). Prooxidative activity of celastrol induces apoptosis, dna damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 12. doi:10.1155/2019/6793957
- [27] Ning, J. Y., Ma, B., Huang, J. Y., Han, L., Shao, Y. H. & Wang, F. Y. (2024). Integrated network pharmacology and metabolomics reveal the action mechanisms of vincristine combined with celastrol against colon cancer. Journal of Pharmaceutical and Biomedical Analysis, 239, 115883.doi: 10.1016/j.jpba.2023.115883
- [28] Mutlu Altundağ, E., Jannuzzi, A. T., Özbilenler, C., Ustürk, S. & Altınoğlu, G. (2024). Synergistic role of thymoquinone and 5-fluorouracil in U-251MG glioblastoma cell line. Turkish Journal of Biochemistry, 49(1), 82-89. doi: 10.1515/tjb-2023-0150
- [29] Özkoç, M., Özbal, B. S., & Altundağ, E.M. (2022). Evaluation of antiproliferative effect of cisplatin and thymoquinone combination on MCF-7 cells. Biological Diversity and Conservation, 348, 355.doi: 10.46309/biodicon.2022.1168903
- [30] Hamed, R. A., & Talib, W. H. (2024). Targeting cisplatin resistance in breast cancer using a combination of Thymoquinone and Silymarin: an in vitro and in vivo study. Pharmacia, 71, 1-19.doi: 10.3897/pharmacia.71.e117997
- [31] Afrin, S., Giampieri, F., Cianciosi, D., Alvarez-Suarez, J. M., Bullon, B., Amici, A., Quiles, J. L., Forbes-Hernández, T. Y., & Battino, M. (2021). Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol., 156, 112484. doi: 10.1016/j.fct.2021.112484.
- [32] Wang, L., Tang, L., Yao, C., Liu, C., & Shu, Y. (2021). The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 Cells. Journal of Immunology Research. doi: 10.1155/2021/5532269