Research Article
BibTex RIS Cite

The stimulation of apoptosis via mitochondrial (intrinsic) pathway in HeLa cells by some anthraquinone derivates

Year 2025, Volume: 18 Issue: 3, 445 - 455
https://doi.org/10.46309/biodicon.2025.1652554

Abstract

Objective:
The aim of this study was to investigate the effects of Ant-3, -4, and -6 anthraquinone derivatives on the mitochondrial (intrinsic) apoptotic pathway in HeLa cells.
Methods:
Mitochondrial membrane potential changes, Caspase-9 activity, apoptotic activity, and protein expression levels involved in the intrinsic pathway were measured. The TUNEL method was used to determine the apoptotic index.
Results:
Maximum Caspase-9 activation was observed after 6 hours of incubation with Ant-6 (3 μM) and Ant-4 (5 μM).The highest mitochondrial membrane potential change occurred after 36 hours of treatment with Ant-4 (5 μM).The apoptotic index, determined by the TUNEL method, peaked in the Ant-4 (5 μM) group after 48 hours. Increased expression of AIF and EndoG proteins was observed after 48 hours in HeLa cells treated with Ant-4 and mitoxantrone.
Conclusion:
These findings show promising results in in vitro experiments. However, further clinical studies are needed to validate the therapeutic potential of these newly synthesized anthraquinone derivatives in the treatment of cervical cancer.

Project Number

This work has been supported by Anadolu University Scientific Research Projects Coordination Unit under grant number 1501S007.

References

  • [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • [2] Ma, C., Gu, Y., Liu, C., Tang, X., Yu, J., Li, D., & Liu, J. (2023). Anti-cervical cancer effects of Compound Yangshe granule through the PI3K/AKT pathway based on network pharmacology. J. Ethnopharmacol., 301, 115820. https://doi.org/10.1016/j.jep.2022.115820
  • [3] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 74(3), 229–263. https://doi.org/10.3322/caac.21834
  • [4] Wang, L., Zhao, Y., Wang, Y., & Wu, X. (2018). The role of galectins in cervical cancer biology and progression. Biomed. Res. Int., 2018, 2175927. https://doi.org/10.1155/2018/2175927
  • [5] Jin, Y. M., Liu, S. S., Chen, J., Chen, Y. N., & Ren, C. C. (2018). Robotic radical hysterectomy is superior to laparoscopic and open radical hysterectomy in the treatment of cervical cancer. PLoS One, 13(3), e0193033. https://doi.org/10.1371/journal.pone.0193033
  • [6] Malik, E. M., & Müller, C. E. (2016). Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 36(4), 705–748. https://doi.org/10.1002/med.21391
  • [7] Damiani, R. M., Moura, D. J., Viau, C. M., Caceres, R. A., Henriques, J. A. P., & Saffi, J. (2016). Pathways of cardiac toxicity: Comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol., 90, 2063–2076. https://doi.org/10.1007/s00204-016-1759-y
  • [8] Ly, J. D., Grubb, D. R., & Lawen, A. (2003). The mitochondrial membrane potential (Δψm) in apoptosis: An update. Apoptosis, 8, 115–128. https://doi.org/10.1023/A:1022945107762
  • [9] Huang, Q., Lu, G., Shen, H. M., Chung, M. C., & Ong, C. N. (2007). Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 27(5), 609–630. https://doi.org/10.1002/med.20094
  • [10] Khan, K., Karodi, R., Siddiqui, A., Thube, S., & Rub, R. (2011). Development of anti-acne gel formulation of anthraquinone-rich fraction from Rubia cordifolia (Rubiaceae). Int. J. Appl. Res. Nat. Prod., 4(4), 28–36.
  • [11] Davis, R. H., Agnew, P. S., & Shapiro, E. (1986). Antiarthritic activity of anthraquinones found in Aloe vera for podiatric medicine. J. Am. Podiatr. Med. Assoc., 76(2), 61–68. https://doi.org/10.7547/87507315-76-2-61
  • [12] Wuthi-udomlert, M., Kupittayanant, P., & Gritsanapan, W. (2010). In vitro evaluation of antifungal activity of anthraquinone derivatives of Senna alata. J. Health Res., 24(3), 117–122.
  • [13] Jackson, T., Verrier, J., & Kochanek, P. (2013). Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis., 4(1), e451. https://doi.org/10.1038/cddis.2012.187
  • [14] Demarque, D. P., Silva, R. M. P., Santos, L. F., Leopoldino, A. M., Espreafico, E. M., & Lopes, N. P. (2018). Cytotoxicity of structurally diverse anthranoids and correlation with mechanism of action and side effects. J. Pharm. Pharm. Sci., 21(1), 347–353. https://doi.org/10.18433/jpps30077
  • [15] Preobrazhenskaya, M. N., Shchekotikhin, A. E., Shtil, A. A., & Huang, H. S. (2006). Antitumor anthraquinone analogues for multidrug-resistant tumor cells. J. Med. Sci., 26(1), 1–4.
  • [16] Onder, N. I., Incesu, Z., & Özkay, Y. (2015). Synthesis and evaluation of new dithiocarbamic acid 6,11-dioxo-6,11-dihydro-1H-anthra[1,2-d]-imidazol-2-ylmethyl esters. Arch. Pharm., 348(7), 508–517. https://doi.org/10.1002/ardp.201500063
  • [17] Erdogan, M. K., Agca, C. A., & Askin, H. (2019). Enhanced antiproliferative and apoptotic effects of 5-fluorouracil combined with Pistacia eurycarpa extracts on human colorectal cancer cells. Biol. Divers. Conserv., 12(1), 27–38. https://doi.org/10.5505/biodicon.2019.57441
  • [18] Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., Zheng, X., & Li, Q. (2017). Caspase-9: Structure, mechanisms, and clinical application. Oncotarget, 8(14), 23996–24008. https://doi.org/10.18632/oncotarget.15098
  • [19] Singh, M., Malhotra, L., Haque, M. A., Kumar, M., Tikhomirov, A., Litvinova, V., Korolev, A. M., Ethayathulla, A., Das, U., & Shchekotikhin, A. E. (2021). Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie, 182, 152–165. https://doi.org/10.1016/j.biochi.2020.12.024
  • [20] Okon, E., Gaweł-Bęben, K., Jarzab, A., Koch, W., Kukula-Koch, W., & Wawruszak, A. (2023). Therapeutic potential of 1,8-dihydroanthraquinone derivatives for breast cancer. Int. J. Mol. Sci., 24(21), 15789. https://doi.org/10.3390/ijms242115789
  • [21] Luo, S. K., Li, J., Hong, W. D., Zhao, Y., & Tong, X. Z. (2005). Preliminary report of fludarabine, mitoxantrone and dexamethasone in treating refractory or relapsed multiple myeloma. Zhongguo Ai Zheng Za Zhi, 24(12), 1518–1521.
  • [22] Yaoxian, W., Hui, Y., Yunyan, Z., Yanqin, L., Xin, G., & Xiaoke, W. (2013). Emodin induces apoptosis of human cervical cancer HeLa cells via intrinsic mitochondrial and extrinsic death receptor pathways. Cancer Cell Int., 13, 71. https://doi.org/10.1186/1475-2867-13-71
  • [23] Wijesekara, I., Zhang, C., Van Ta, Q., Vo, T. S., Li, Y. X., & Kim, S. K. (2014). Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res., 169(4), 255–261. https://doi.org/10.1016/j.micres.2013.09.001
  • [24] Radogna, F., Diederich, M., & Ghibelli, L. (2008). Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J. Pineal Res., 44(3), 316–325. https://doi.org/10.1111/j.1600-079X.2007.00532.x
  • [25] Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., & Wang, X. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132. https://doi.org/10.1126/science.275.5303.1129
  • [26] Chiang, J. H., Yang, J. S., Ma, C. Y., Yang, M. D., Huang, H. Y., Hsia, T. C., Kuo, H. M., Wu, P. P., Lee, T. H., & Chung, J. G. (2011). Danthron, an anthraquinone derivative, induces DNA damage and caspase cascade-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem. Res. Toxicol., 24(1), 20–29. https://doi.org/10.1021/tx100248s

Bazı Antrakinon Türevleri ile HeLa Hücrelerinde Mitokondriyal (İntrinsik) Yolak Üzerinden Apoptozun Uyarılması

Year 2025, Volume: 18 Issue: 3, 445 - 455
https://doi.org/10.46309/biodicon.2025.1652554

Abstract

Amaç:
Bu çalışmanın amacı, Ant-3, -4 ve -6 antrakinon türevlerinin HeLa hücrelerinde mitokondriyal (intrinsik) apoptotik yolak üzerindeki etkilerini araştırmaktır.
Yöntemler:
Mitokondriyal membran potansiyeli değişiklikleri, Kaspaz-9 aktivitesi, apoptotik aktivite ve intrinsik yolağa dahil olan proteinlerin ekspresyon seviyeleri ölçülmüştür. Apoptotik indeksin belirlenmesinde TUNEL yöntemi kullanılmıştır.
Bulgular:
Ant-6 (3 μM) ve Ant-4 (5 μM) ile 6 saatlik inkübasyon sonrası maksimum Kaspaz-9 aktivasyonu gözlenmiştir. Mitokondriyal membran potansiyelindeki en yüksek değişiklik, Ant-4 (5 μM) ile 36 saatlik uygulama sonrası meydana gelmiştir. TUNEL yöntemiyle belirlenen apoptotik indeks, Ant-4 (5 μM) grubunda 48 saat sonunda en yüksek seviyeye ulaşmıştır. Ant-4 ve mitoksantron ile tedavi edilen HeLa hücrelerinde 48 saat sonunda AIF ve EndoG proteinlerinin ekspresyonunda artış gözlenmiştir.
Sonuç:
Bu bulgular, in vitro deneylerde umut verici sonuçlar ortaya koymaktadır. Bununla birlikte, bu yeni sentezlenen antrakinon türevlerinin rahim ağzı kanseri tedavisindeki terapötik potansiyelini doğrulamak için ileri klinik çalışmalara ihtiyaç vardır.

Ethical Statement

Funding This work has been supported by Anadolu University Scientific Research Projects Coordination Unit under grant number 1501S007.

Project Number

This work has been supported by Anadolu University Scientific Research Projects Coordination Unit under grant number 1501S007.

References

  • [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • [2] Ma, C., Gu, Y., Liu, C., Tang, X., Yu, J., Li, D., & Liu, J. (2023). Anti-cervical cancer effects of Compound Yangshe granule through the PI3K/AKT pathway based on network pharmacology. J. Ethnopharmacol., 301, 115820. https://doi.org/10.1016/j.jep.2022.115820
  • [3] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 74(3), 229–263. https://doi.org/10.3322/caac.21834
  • [4] Wang, L., Zhao, Y., Wang, Y., & Wu, X. (2018). The role of galectins in cervical cancer biology and progression. Biomed. Res. Int., 2018, 2175927. https://doi.org/10.1155/2018/2175927
  • [5] Jin, Y. M., Liu, S. S., Chen, J., Chen, Y. N., & Ren, C. C. (2018). Robotic radical hysterectomy is superior to laparoscopic and open radical hysterectomy in the treatment of cervical cancer. PLoS One, 13(3), e0193033. https://doi.org/10.1371/journal.pone.0193033
  • [6] Malik, E. M., & Müller, C. E. (2016). Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 36(4), 705–748. https://doi.org/10.1002/med.21391
  • [7] Damiani, R. M., Moura, D. J., Viau, C. M., Caceres, R. A., Henriques, J. A. P., & Saffi, J. (2016). Pathways of cardiac toxicity: Comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol., 90, 2063–2076. https://doi.org/10.1007/s00204-016-1759-y
  • [8] Ly, J. D., Grubb, D. R., & Lawen, A. (2003). The mitochondrial membrane potential (Δψm) in apoptosis: An update. Apoptosis, 8, 115–128. https://doi.org/10.1023/A:1022945107762
  • [9] Huang, Q., Lu, G., Shen, H. M., Chung, M. C., & Ong, C. N. (2007). Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev., 27(5), 609–630. https://doi.org/10.1002/med.20094
  • [10] Khan, K., Karodi, R., Siddiqui, A., Thube, S., & Rub, R. (2011). Development of anti-acne gel formulation of anthraquinone-rich fraction from Rubia cordifolia (Rubiaceae). Int. J. Appl. Res. Nat. Prod., 4(4), 28–36.
  • [11] Davis, R. H., Agnew, P. S., & Shapiro, E. (1986). Antiarthritic activity of anthraquinones found in Aloe vera for podiatric medicine. J. Am. Podiatr. Med. Assoc., 76(2), 61–68. https://doi.org/10.7547/87507315-76-2-61
  • [12] Wuthi-udomlert, M., Kupittayanant, P., & Gritsanapan, W. (2010). In vitro evaluation of antifungal activity of anthraquinone derivatives of Senna alata. J. Health Res., 24(3), 117–122.
  • [13] Jackson, T., Verrier, J., & Kochanek, P. (2013). Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis., 4(1), e451. https://doi.org/10.1038/cddis.2012.187
  • [14] Demarque, D. P., Silva, R. M. P., Santos, L. F., Leopoldino, A. M., Espreafico, E. M., & Lopes, N. P. (2018). Cytotoxicity of structurally diverse anthranoids and correlation with mechanism of action and side effects. J. Pharm. Pharm. Sci., 21(1), 347–353. https://doi.org/10.18433/jpps30077
  • [15] Preobrazhenskaya, M. N., Shchekotikhin, A. E., Shtil, A. A., & Huang, H. S. (2006). Antitumor anthraquinone analogues for multidrug-resistant tumor cells. J. Med. Sci., 26(1), 1–4.
  • [16] Onder, N. I., Incesu, Z., & Özkay, Y. (2015). Synthesis and evaluation of new dithiocarbamic acid 6,11-dioxo-6,11-dihydro-1H-anthra[1,2-d]-imidazol-2-ylmethyl esters. Arch. Pharm., 348(7), 508–517. https://doi.org/10.1002/ardp.201500063
  • [17] Erdogan, M. K., Agca, C. A., & Askin, H. (2019). Enhanced antiproliferative and apoptotic effects of 5-fluorouracil combined with Pistacia eurycarpa extracts on human colorectal cancer cells. Biol. Divers. Conserv., 12(1), 27–38. https://doi.org/10.5505/biodicon.2019.57441
  • [18] Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., Zheng, X., & Li, Q. (2017). Caspase-9: Structure, mechanisms, and clinical application. Oncotarget, 8(14), 23996–24008. https://doi.org/10.18632/oncotarget.15098
  • [19] Singh, M., Malhotra, L., Haque, M. A., Kumar, M., Tikhomirov, A., Litvinova, V., Korolev, A. M., Ethayathulla, A., Das, U., & Shchekotikhin, A. E. (2021). Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie, 182, 152–165. https://doi.org/10.1016/j.biochi.2020.12.024
  • [20] Okon, E., Gaweł-Bęben, K., Jarzab, A., Koch, W., Kukula-Koch, W., & Wawruszak, A. (2023). Therapeutic potential of 1,8-dihydroanthraquinone derivatives for breast cancer. Int. J. Mol. Sci., 24(21), 15789. https://doi.org/10.3390/ijms242115789
  • [21] Luo, S. K., Li, J., Hong, W. D., Zhao, Y., & Tong, X. Z. (2005). Preliminary report of fludarabine, mitoxantrone and dexamethasone in treating refractory or relapsed multiple myeloma. Zhongguo Ai Zheng Za Zhi, 24(12), 1518–1521.
  • [22] Yaoxian, W., Hui, Y., Yunyan, Z., Yanqin, L., Xin, G., & Xiaoke, W. (2013). Emodin induces apoptosis of human cervical cancer HeLa cells via intrinsic mitochondrial and extrinsic death receptor pathways. Cancer Cell Int., 13, 71. https://doi.org/10.1186/1475-2867-13-71
  • [23] Wijesekara, I., Zhang, C., Van Ta, Q., Vo, T. S., Li, Y. X., & Kim, S. K. (2014). Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res., 169(4), 255–261. https://doi.org/10.1016/j.micres.2013.09.001
  • [24] Radogna, F., Diederich, M., & Ghibelli, L. (2008). Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J. Pineal Res., 44(3), 316–325. https://doi.org/10.1111/j.1600-079X.2007.00532.x
  • [25] Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., & Wang, X. (1997). Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science, 275(5303), 1129–1132. https://doi.org/10.1126/science.275.5303.1129
  • [26] Chiang, J. H., Yang, J. S., Ma, C. Y., Yang, M. D., Huang, H. Y., Hsia, T. C., Kuo, H. M., Wu, P. P., Lee, T. H., & Chung, J. G. (2011). Danthron, an anthraquinone derivative, induces DNA damage and caspase cascade-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem. Res. Toxicol., 24(1), 20–29. https://doi.org/10.1021/tx100248s
There are 26 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Elif Apaydın 0000-0002-2544-4068

İpek Nur Önder 0009-0002-0954-5501

Zerrin İncesu 0000-0001-6042-3812

Filiz Özdemir 0000-0002-3359-4496

Project Number This work has been supported by Anadolu University Scientific Research Projects Coordination Unit under grant number 1501S007.
Early Pub Date October 22, 2025
Publication Date October 28, 2025
Submission Date March 6, 2025
Acceptance Date October 22, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Apaydın, E., Önder, İ. N., İncesu, Z., Özdemir, F. (2025). The stimulation of apoptosis via mitochondrial (intrinsic) pathway in HeLa cells by some anthraquinone derivates. Biological Diversity and Conservation, 18(3), 445-455. https://doi.org/10.46309/biodicon.2025.1652554

❖  Indexes
{Additional Web of Science Indexes: Zoological Record] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖  Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Eskişehir Teknik Üniversitesi Library, Exeter University; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University.

❖ Articles published in the journal “Biological Diversity and Conservation” are freely accessible. No article processing charge (APC) is charged.

❖ Additional Web of Science Indexes: Zoological Record, Clavariate Analytic
❖ This journal is a member of CrossRef;10.46309/biodicon.
❖ For published articles and full details about the journal, please visit http://www.biodicon.com; https://dergipark.org.tr/tr/yayin/biodicon.


❖  Correspondence Address:: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-mail: biodicon@gmail.com;
❖ Web Address: http://www.biodicon.com;  https://dergipark.org.tr/tr/pub/biodicon
❖ Biological Diversity and Conservation
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
Publication Start Date 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma;  Available online at www.biodicon.com. All rights reserved.
. ❖ Publisher: ERSİN YÜCEL (https://www.ersinyucel.com.tr)
❖ This Journal is published three times a year. It is printed in Eskişehir, Türkiye.
❖ The authors are solely responsible for the articles published in this Journal .
Editör  : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578