Research Article
BibTex RIS Cite
Year 2022, , 16 - 20, 21.06.2022
https://doi.org/10.51539/biotech.1033573

Abstract

References

  • Aguilera-Morales M, Casas-Veldez S, Carrilo-Domingez S, Gonzalez-Acosta B, Perez-Gil F (2005) Chemical Composition and Microbiological Assays of Marine Microalgae Enteromorpha spp. as a Potential Food Source. J Food Compost Anal, 18(1): 79-88.
  • Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Jurikova T (2014) Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules, 19(2):2344-2360.
  • Azgın C, Işık O, Uslu L, Ak B (2014) A Comparison the Biomass of Productivity, Protein and Lipid Content of Spirulina platensis Cultured in the Pond and Photobioreactor. JBES, 8(24): 183-187.
  • Badzhanov AS, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova MK (2004) Chemical Composition of Spirulina platensis Cultivated in Uzbekistan. Chem. Nat. Compd, 40: 276–279.
  • Belay A (2002) The Potential Application of Spirulina (Arthrospira) as a Nutritional and Therapeutic Supplement in Health Management. J. Am. Nutraceut. Ass., 5(2): 27-48.
  • Bigogno C, Khozin-Goldberga I, Boussiba S, Vonshak A, Cohena Z (2002) Lipid and Fatty Acid Composition of the Green Oleaginous Alga Parietochloris incisa, The Richest Plant Source of Arachidonic Acid. Phytochemistry, 60: 497-503.
  • Certik M, Shimizu S (1999) Biosynthesis and Regulation of Microbial Polyunsaturated Fatty Acid Production. J. Biosci. Bioeng., 87(1):1-14.
  • Chernova NJ, Kiselova VS, Chernov, NM (2001) Nutritional Value of Spirulina platensis. Russ. Agric. Sci., 6: 60-63.
  • Colla LM, Bertolin TE, Costa JAV (2004) Fatty Acids Profile of Spirulina platensis Grown Under Different Temperatures and Nitrogen Concentrations. Z. Naturforsch., C, J. Biosci., 59(1/2): 55-59.
  • Colla LM, Oliveira Reinehr C, Reichert C, Costa, JAV (2007) Production of Biomass and Nutraceutical Compounds by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bioresour. Technol., 98(7): 1489-1493.
  • Colla LM, Reinehr CO, Reichert CJ, Costa AV (2007) Production of Biomass and Nutraceutical Compounds by Spirulina Platensis Under Different Temperature and Nitrogen Regimes. Bioresour. Technol., 98: 1489–1493.
  • Dawczynski C, Schubert R, Jahreis G (2007) Amino Acids, Fatty Acids and Dietary Fibre in Edible Seaweed Products. Food Chem, 103(3): 891-899.
  • de Swaaf ME, De Rijk TC, Eggink G, Sijtsma L (1999) Optimisation of Docosahexaenoic Acid Production in Batch Cultivations by Crypthecodinium cohnii. Progress in Industrial Microbiology, 35: 185-192.
  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR Spectroscopy for Rapid Determination of Lipid Accumulation in Response to Nitrogen Limitation in Freshwater Microalgae. Bioresour. Technol., 101(12): 4499-4507.
  • Durmaz Y, Gökpınar Ş (2006) α-tocopherol and Fatty acids of Spirulina platensis Biomass in Glass Panel Bioreactor. Pak. J. Biol. Sci., 9: 2901-2904.
  • Folch J, Lees M, Sloane-Stanley G (1957). A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem, 226(1), 497-509.
  • Griffiths MJ, Garcin C, van Hille RP, Harrison ST (2011) Interference by Pigment in The Estimation of Microalgal Biomass Concentration by Optical Density. J. Microbiol. Methods, 85(2): 119-123.
  • Gunstone FD, Harwood JL, Dijkstra AF (2007) The Lipid Handbook, 3rd ed. Taylor and Francis, Boca Raton, 793 pp.
  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. Food and Agriculture Organization of the United Nations, p: 33.
  • Hoseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and Medical Applications of Spirulina Microalgae. Mini Rev Med Chem, 13(8):1231-1237.
  • Kachroo D, Singh Jolly SM, Ramamurthy V (2006) Modulation of Unsaturated Fatty Acids Content in Algae Spirulina platensis and Chlorella minutissima in Response to Herbicide SAN 9785. Electron. J. Biotechnol, 9(4):0-0.
  • Knothe G (2005) Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters. Fuel Process. Technol., 86(10):1059-1070.
  • Madkour FF, Kamil AEW, Nasr HS (2012) Production and Nutritive Value of Spirulina platensis in Reduced Cost Media. Egypt. J. Aquat. Res., 38(1): 51-57.
  • Mendes A, Guerra P, Madeira V, Ruano F, Da Silva TL, Reis A (2007) Study of Docosahexaenoic Acid Production by the Heterotrophic Microalga Crypthecodinium cohnii CCMP 316 Using Carob Pulp as a Promising Carbon Source. World J. Microbiol. Biotechnol, 23: 1209-1215.
  • Oliveira M, Monteiro M, Robbs P, Leite S (1999) Growth and Chemical Composition of Spirulina maxima and Spirulina platensis Biomass at Different Temperatures. Aquac Int, 7(4): 261-275.
  • Ötleş S, Pire R (2001) Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. J AOAC Int, 84(6): 1708-1714.
  • Pandey JP, Pathak N, Tiwari A (2010) Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis. J Algal Biomass Util, 1(2): 93-102.
  • Pandey JP, Tiwari A (2010) Optimization of Biomass Production of Spirulina maxima. J Algal Biomass Util, 1(2), 20-32.
  • Petkov GD, Furnadzieva ST (1988) Fatty-Acid Composition of Acylolipids from Spirulina platensis. DOKL BOLG AKAD NAUK, 41(1):103-104.
  • Piorreck M, Baasch KH, Pohl P (1984) Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Freshwater Green and Blue-Green Algae under Different Nitrogen Regimes. Phytochemistry, 23(2): 207-216.
  • Ratledge C (2004) Fatty Acid Biosynthesis in Microorganisms Being Used for Single Cell Oil Production. Biochimie, 86: 807-815.
  • Ratledge C (2005) Single Cell Oils for the 21st Century. Single Cell Oils, 1-20.
  • Ratledge C (2006) Microbial Production of γ- Linolenic Acid: Handbook of Functional Lipids, Ed: Akoh, C.C. CRC Press, Boca Raton. pp:19-46
  • Ratledge C (2008) Microbial Lipids. Biotechnology Set, Second Edition, 133-197.
  • Ratledge C, Cohen Z (2008) Microbial and Algal Oils: Do They Have a Future for Biodiesel or as Commodity Oils? Lipid Technol, 20(1): 55-60.
  • Ratledge C, Wynn JP (2002) The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Adv Appl Microbiol, 51:1-51.
  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-cost Photobioreactor. Biotechnol Bioeng, 102(1): 100-112.
  • Rosa A, Deidda D, Serra A, Deiana M, Dessi MA, Pompei R (2005) Omega-3 Fatty Acid Composition and Biological Activity of Three Microalgae Species. J Food Agric Environ, 3(2): 120-124.
  • Uslu L, Işık O, Koç K, Göksan T (2011) The Effects of Nitrogen Deficiencies on the Lipid Contents of Spirulina platensis. Afr J Biotechnol, 10(3): 386-389.
  • Vance JE, Vance DE (2008) Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier. 639 pp.
  • Vazhappilly R, Chen F (1998) Eicosapentaenoic Acid and Docosahexaenoic Acid Production Potential of Microalgae and Their Heterotrophic Growth. JAOCS 75(3): 393-397.
  • Wynn JP, Ratledge C (2005) Oils from Microorganisms. Bailey's Industrial Oil and Fat Products. 3:5.
  • Xue F, Miao J, Zhang X, Tan T (2010) A New Strategy for Lipid Production by Mix Cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol, 160(2): 498-503

Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes

Year 2022, , 16 - 20, 21.06.2022
https://doi.org/10.51539/biotech.1033573

Abstract

Spirulina is of the worldwide cultivated and consumed microalgae. It is generally used directly or as an additive in the food industry due to its high protein content. Besides the high protein content, Spirulina biomass contains important fatty acids, (e.g. GLA), vitamins, minerals and other bioactive compounds. These important compounds are affected by the parameters of biomass cultivation. In the presented study, the limitation of nitrogen (25%, 50%, 75% and 100% N concentration) and temperature fluctuations (25°C and 30°C) on Spirulina platensis biomass yield, lipids and fatty acid profile were investigated with the comparison of Spirulina medium and Zarrouk medium. In the present investigation, the production of Spirulina platensis was optimized in terms of biomass and metabolites. With the increase in temperature, while the amount of biomass increased in general, dry weight decreased. The highest level of lipid accumulation was determined as 12.31 ± 1.72 % for the sample 25°C, Spirulina medium and 50% N concentration. Protein, lipid, total phenolic substance, and total carotenoid amounts were found at the highest level with the temperature increase to 30°C in all samples except the sample with the highest oil content. Consequently, the highest PUFA values were found in 30°C, Zarrouk medium and 75% N concentration as 42.610%, whereas GLA was 25°C, Zarrouk medium and 100% N concentration as 24.735%. On the other hand, GLA values were determined significantly high both during growth at 25°C and 30°C in Zarrouk medium.

References

  • Aguilera-Morales M, Casas-Veldez S, Carrilo-Domingez S, Gonzalez-Acosta B, Perez-Gil F (2005) Chemical Composition and Microbiological Assays of Marine Microalgae Enteromorpha spp. as a Potential Food Source. J Food Compost Anal, 18(1): 79-88.
  • Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Jurikova T (2014) Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules, 19(2):2344-2360.
  • Azgın C, Işık O, Uslu L, Ak B (2014) A Comparison the Biomass of Productivity, Protein and Lipid Content of Spirulina platensis Cultured in the Pond and Photobioreactor. JBES, 8(24): 183-187.
  • Badzhanov AS, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova MK (2004) Chemical Composition of Spirulina platensis Cultivated in Uzbekistan. Chem. Nat. Compd, 40: 276–279.
  • Belay A (2002) The Potential Application of Spirulina (Arthrospira) as a Nutritional and Therapeutic Supplement in Health Management. J. Am. Nutraceut. Ass., 5(2): 27-48.
  • Bigogno C, Khozin-Goldberga I, Boussiba S, Vonshak A, Cohena Z (2002) Lipid and Fatty Acid Composition of the Green Oleaginous Alga Parietochloris incisa, The Richest Plant Source of Arachidonic Acid. Phytochemistry, 60: 497-503.
  • Certik M, Shimizu S (1999) Biosynthesis and Regulation of Microbial Polyunsaturated Fatty Acid Production. J. Biosci. Bioeng., 87(1):1-14.
  • Chernova NJ, Kiselova VS, Chernov, NM (2001) Nutritional Value of Spirulina platensis. Russ. Agric. Sci., 6: 60-63.
  • Colla LM, Bertolin TE, Costa JAV (2004) Fatty Acids Profile of Spirulina platensis Grown Under Different Temperatures and Nitrogen Concentrations. Z. Naturforsch., C, J. Biosci., 59(1/2): 55-59.
  • Colla LM, Oliveira Reinehr C, Reichert C, Costa, JAV (2007) Production of Biomass and Nutraceutical Compounds by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bioresour. Technol., 98(7): 1489-1493.
  • Colla LM, Reinehr CO, Reichert CJ, Costa AV (2007) Production of Biomass and Nutraceutical Compounds by Spirulina Platensis Under Different Temperature and Nitrogen Regimes. Bioresour. Technol., 98: 1489–1493.
  • Dawczynski C, Schubert R, Jahreis G (2007) Amino Acids, Fatty Acids and Dietary Fibre in Edible Seaweed Products. Food Chem, 103(3): 891-899.
  • de Swaaf ME, De Rijk TC, Eggink G, Sijtsma L (1999) Optimisation of Docosahexaenoic Acid Production in Batch Cultivations by Crypthecodinium cohnii. Progress in Industrial Microbiology, 35: 185-192.
  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR Spectroscopy for Rapid Determination of Lipid Accumulation in Response to Nitrogen Limitation in Freshwater Microalgae. Bioresour. Technol., 101(12): 4499-4507.
  • Durmaz Y, Gökpınar Ş (2006) α-tocopherol and Fatty acids of Spirulina platensis Biomass in Glass Panel Bioreactor. Pak. J. Biol. Sci., 9: 2901-2904.
  • Folch J, Lees M, Sloane-Stanley G (1957). A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem, 226(1), 497-509.
  • Griffiths MJ, Garcin C, van Hille RP, Harrison ST (2011) Interference by Pigment in The Estimation of Microalgal Biomass Concentration by Optical Density. J. Microbiol. Methods, 85(2): 119-123.
  • Gunstone FD, Harwood JL, Dijkstra AF (2007) The Lipid Handbook, 3rd ed. Taylor and Francis, Boca Raton, 793 pp.
  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish. Food and Agriculture Organization of the United Nations, p: 33.
  • Hoseini SM, Khosravi-Darani K, Mozafari MR (2013) Nutritional and Medical Applications of Spirulina Microalgae. Mini Rev Med Chem, 13(8):1231-1237.
  • Kachroo D, Singh Jolly SM, Ramamurthy V (2006) Modulation of Unsaturated Fatty Acids Content in Algae Spirulina platensis and Chlorella minutissima in Response to Herbicide SAN 9785. Electron. J. Biotechnol, 9(4):0-0.
  • Knothe G (2005) Dependence of Biodiesel Fuel Properties on the Structure of Fatty Acid Alkyl Esters. Fuel Process. Technol., 86(10):1059-1070.
  • Madkour FF, Kamil AEW, Nasr HS (2012) Production and Nutritive Value of Spirulina platensis in Reduced Cost Media. Egypt. J. Aquat. Res., 38(1): 51-57.
  • Mendes A, Guerra P, Madeira V, Ruano F, Da Silva TL, Reis A (2007) Study of Docosahexaenoic Acid Production by the Heterotrophic Microalga Crypthecodinium cohnii CCMP 316 Using Carob Pulp as a Promising Carbon Source. World J. Microbiol. Biotechnol, 23: 1209-1215.
  • Oliveira M, Monteiro M, Robbs P, Leite S (1999) Growth and Chemical Composition of Spirulina maxima and Spirulina platensis Biomass at Different Temperatures. Aquac Int, 7(4): 261-275.
  • Ötleş S, Pire R (2001) Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. J AOAC Int, 84(6): 1708-1714.
  • Pandey JP, Pathak N, Tiwari A (2010) Standardization of pH and Light Intensity for the Biomass Production of Spirulina platensis. J Algal Biomass Util, 1(2): 93-102.
  • Pandey JP, Tiwari A (2010) Optimization of Biomass Production of Spirulina maxima. J Algal Biomass Util, 1(2), 20-32.
  • Petkov GD, Furnadzieva ST (1988) Fatty-Acid Composition of Acylolipids from Spirulina platensis. DOKL BOLG AKAD NAUK, 41(1):103-104.
  • Piorreck M, Baasch KH, Pohl P (1984) Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Freshwater Green and Blue-Green Algae under Different Nitrogen Regimes. Phytochemistry, 23(2): 207-216.
  • Ratledge C (2004) Fatty Acid Biosynthesis in Microorganisms Being Used for Single Cell Oil Production. Biochimie, 86: 807-815.
  • Ratledge C (2005) Single Cell Oils for the 21st Century. Single Cell Oils, 1-20.
  • Ratledge C (2006) Microbial Production of γ- Linolenic Acid: Handbook of Functional Lipids, Ed: Akoh, C.C. CRC Press, Boca Raton. pp:19-46
  • Ratledge C (2008) Microbial Lipids. Biotechnology Set, Second Edition, 133-197.
  • Ratledge C, Cohen Z (2008) Microbial and Algal Oils: Do They Have a Future for Biodiesel or as Commodity Oils? Lipid Technol, 20(1): 55-60.
  • Ratledge C, Wynn JP (2002) The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Adv Appl Microbiol, 51:1-51.
  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-cost Photobioreactor. Biotechnol Bioeng, 102(1): 100-112.
  • Rosa A, Deidda D, Serra A, Deiana M, Dessi MA, Pompei R (2005) Omega-3 Fatty Acid Composition and Biological Activity of Three Microalgae Species. J Food Agric Environ, 3(2): 120-124.
  • Uslu L, Işık O, Koç K, Göksan T (2011) The Effects of Nitrogen Deficiencies on the Lipid Contents of Spirulina platensis. Afr J Biotechnol, 10(3): 386-389.
  • Vance JE, Vance DE (2008) Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier. 639 pp.
  • Vazhappilly R, Chen F (1998) Eicosapentaenoic Acid and Docosahexaenoic Acid Production Potential of Microalgae and Their Heterotrophic Growth. JAOCS 75(3): 393-397.
  • Wynn JP, Ratledge C (2005) Oils from Microorganisms. Bailey's Industrial Oil and Fat Products. 3:5.
  • Xue F, Miao J, Zhang X, Tan T (2010) A New Strategy for Lipid Production by Mix Cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol, 160(2): 498-503
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering, Food Engineering
Journal Section Research Articles
Authors

Oya Irmak Şahin 0000-0003-2225-7993

Arzu Akpınar Bayizit 0000-0003-1898-1153

Publication Date June 21, 2022
Acceptance Date April 9, 2022
Published in Issue Year 2022

Cite

APA Şahin, O. I., & Akpınar Bayizit, A. (2022). Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bulletin of Biotechnology, 3(1), 16-20. https://doi.org/10.51539/biotech.1033573
AMA Şahin OI, Akpınar Bayizit A. Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bull. Biotechnol. June 2022;3(1):16-20. doi:10.51539/biotech.1033573
Chicago Şahin, Oya Irmak, and Arzu Akpınar Bayizit. “Production of Biomass and γ-Linolenic Acid Production by Spirulina Platensis Under Different Temperature and Nitrogen Regimes”. Bulletin of Biotechnology 3, no. 1 (June 2022): 16-20. https://doi.org/10.51539/biotech.1033573.
EndNote Şahin OI, Akpınar Bayizit A (June 1, 2022) Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bulletin of Biotechnology 3 1 16–20.
IEEE O. I. Şahin and A. Akpınar Bayizit, “Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes”, Bull. Biotechnol., vol. 3, no. 1, pp. 16–20, 2022, doi: 10.51539/biotech.1033573.
ISNAD Şahin, Oya Irmak - Akpınar Bayizit, Arzu. “Production of Biomass and γ-Linolenic Acid Production by Spirulina Platensis Under Different Temperature and Nitrogen Regimes”. Bulletin of Biotechnology 3/1 (June 2022), 16-20. https://doi.org/10.51539/biotech.1033573.
JAMA Şahin OI, Akpınar Bayizit A. Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bull. Biotechnol. 2022;3:16–20.
MLA Şahin, Oya Irmak and Arzu Akpınar Bayizit. “Production of Biomass and γ-Linolenic Acid Production by Spirulina Platensis Under Different Temperature and Nitrogen Regimes”. Bulletin of Biotechnology, vol. 3, no. 1, 2022, pp. 16-20, doi:10.51539/biotech.1033573.
Vancouver Şahin OI, Akpınar Bayizit A. Production of Biomass and γ-Linolenic Acid Production by Spirulina platensis Under Different Temperature and Nitrogen Regimes. Bull. Biotechnol. 2022;3(1):16-20.