Research Article
BibTex RIS Cite
Year 2023, , 24 - 30, 30.06.2023
https://doi.org/10.38042/biotechstudies.1273778

Abstract

References

  • Ahad, A., Ganai, A. A., Mujeeb, M., & Siddiqui, W. A. (2014). Chrysin, an antiinflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 279, 1e7. https://doi.org/10.1016/j.taap.2014.05.007.
  • Ardon, A. E., Prasad, A., McClain, R. L., Melton, M. S., Nielsen, K. C., & Greengrass, R. (2019). Regional Anesthesia for Ambulatory Anesthesiologists. Anesthesiology Clinics, 37(2), 265–287. https://doi.org/10.1016/j.anclin.2019.01.005.
  • Belli, S., Rossi, M., Molasky, N., Middleton, L., Caldwell, C., Bartow-McKenney, C., Duong, M., Chiu, J., Gibbs, E., Caldwell, A., Gahn, C., & Caruso, F. (2019). Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants. Antioxidants (Basel, Switzerland), 8(1), 14. https://doi.org/10.3390/antiox8010014.
  • Bouderba, S., Sanz, M. N., Sánchez-Martín, C., El-Mir, M. Y., Villanueva, G. R., Detaille, D., & Koceïr, E. A. (2012). Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model. Experimental Diabetes Research, 2012, 430176. https://doi.org/10.1155/2012/430176.
  • Çınar Ayan, İ., Güçlü, E., Vural, H., & Dursun, H. G. (2022). Piceatannol induces apoptotic cell death through activation of caspase-dependent pathway and upregulation of ROS-mediated mitochondrial dysfunction in pancreatic cancer cells. Molecular Biology Reports, 49(12), 11947–11957. https://doi.org/10.1007/s11033-022-08006-8.
  • Dhanalakshmi, C., Manivasagam, T., Nataraj, J., Justin Thenmozhi, A., & Essa, M. M. (2015). Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Evidence-Based Complementary and Alternative Medicine: eCAM, 2015, 626028. https://doi.org/10.1155/2015/626028.
  • El-Sisi, A. E., El-Sayad, M. E., & Abdelsalam, N. M. (2017). Protective effects of mirtazapine and chrysin on experimentally induced testicular damage in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 95, 1059–1066. https://doi.org/10.1016/j.biopha.2017.09.022.
  • Filho, C. B., Jesse, C. R., Donato, F., Giacomeli, R., Del Fabbro, L., da Silva Antunes, M., de Gomes, M. G., Goes, A. T., Boeira, S. P., Prigol, M., & Souza, L. C. (2015). Chronic unpredictable mild stress decreases BDNF and NGF levels and Na (+), K (+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience, 289, 367–380. https://doi.org/10.1016/j.neuroscience.2014.12.048.
  • Güçlü, E., Ayan, İ. Ç., & Vural, H. (2022). Inhibitory effect of AK-7 mediates by apoptosis, increases DNA fragmentation and caspase-3 activity in human glioblastoma multiforme cells. Bangladesh Journal of Pharmacology, 17(2), 42-50. https://doi.org/10.3329/bjp.v17i2.59809.
  • Ji, J., Yan, X., Li, Z., Lai, Z., & Liu, J. (2015). Therapeutic effects of intrathecal versus intravenous monosialoganglioside against bupivacaine-induced spinal neurotoxicity in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 69, 311–316. https://doi.org/ 10.1016/j.biopha.2014.12.020.
  • Karthikeyan, S., Srinivasan, R., AfaqWani, S., & Manoharan, S. (2013). Chemopreventive potential of chrysin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Int. J. Nutr. Pharmacol. Neurol. Dis. 3, 46e53. https://doi.org/10.4103/2231-0738.106993.
  • Kendall, M. C., Castro Alves, L. J., & De Oliveira, G., Jr (2018). Liposome Bupivacaine Compared to Plain Local Anesthetics to Reduce Postsurgical Pain: An Updated Meta-Analysis of Randomized Controlled Trials. Pain Research and Treatment, 2018, 5710169. https://doi.org/10.1155/2018/5710169.
  • Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35(10), 1114–1124. https://doi.org/10.1002/tox.22947.
  • Li, L., Zhang, Q. G., Lai, L. Y., Wen, X. J., Zheng, T., Cheung, C. W., Zhou, S. Q., & Xu, S. Y. (2013). Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxidative Medicine and Cellular Longevity, 2013, 159864. https://doi.org/10.1155/2013/159864.
  • Lim, W., Ryu, S., Bazer, F. W., Kim, S. M., & Song, G. (2018). Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. Journal of Cellular Physiology, 233(4), 3129–3140. https://doi.org/10.1002/jcp.26150.
  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292.
  • Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196. https://doi.org/10.1016/j.phytochem.2017.09.016.
  • Mishra, A., Mishra, P. S., Bandopadhyay, R., Khurana, N., Angelopoulou, E., Paudel, Y. N., & Piperi, C. (2021). Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules (Basel, Switzerland), 26(21), 6456. https://doi.org/10.3390/molecules26216456.
  • Moldogazieva, N. T., Lutsenko, S. V., & Terentiev, A. A. (2018). Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Research, 78(21), 6040–6047. https://doi.org/10.1158/0008-5472.CAN-18-0980.
  • Nirmaladevi, D., Venkataramana, M., Chandranayaka, S., Ramesha, A., Jameel, N. M., & Srinivas, C. (2014). Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cellular and Molecular Neurobiology, 34(7), 973–985.
  • Niu, X., Chen, J., Wang, P., Zhou, H., Li, S., & Zhang, M. (2014). The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway. Cell Biochemistry and Biophysics, 70(1), 241–249. https://doi.org/ 10.1007/s12013-014-9888-5.
  • Parajuli, P., Joshee, N., Rimando, A. M., Mittal, S., & Yadav, A. K. (2009). In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Medica, 75(1), 41–48. https://doi.org/10.1055/s-0028-1088364.
  • Reddy S. P. (2008). The antioxidant response element and oxidative stress modifiers in airway diseases. Current Molecular Medicine, 8(5), 376–383. https://doi.org/10.2174/156652408785160925.
  • Samarghandian, S., Afshari, J. T., & Davoodi, S. (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (Sao Paulo, Brazil), 66(6), 1073–1079. https://doi.org/10.1590/s1807-59322011000600026.
  • Sathiavelu, J., Senapathy, G. J., Devaraj, R., & Namasivayam, N. (2009). Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. The Journal Of Pharmacy and Pharmacology, 61(6), 809–817. https://doi.org/10.1211/jpp/61.06.0015.
  • Song, J. H., Kim, Y. H., Lee, S. C., Kim, M. H., & Lee, J. H. (2016). Inhibitory Effect of Chrysin (5,7-Dihydroxyflavone) on Experimental Choroidal Neovascularization in Rats. Ophthalmic Research, 56(1), 49–55. https://doi.org/10.1159/000444929.
  • Souza, L. C., Antunes, M. S., Filho, C. B., Del Fabbro, L., de Gomes, M. G., Goes, A. T., Donato, F., Prigol, M., Boeira, S. P., & Jesse, C. R. (2015). Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacology, Biochemistry, and Behavior, 134, 22–30. https://doi.org/10.1016/j.pbb.2015.04.010.
  • Su, Z. Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A. N. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–162. https://doi.org/10.1007/128_2012_340.
  • Sukprasansap, M., Chanvorachote, P., & Tencomnao, T. (2020). Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate- induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells. BMC Complementary Medicine and Therapies, 20(1), 46. https://doi.org/10.1186/s12906-020-2819-7.
  • Vedagiri, A., & Thangarajan, S. (2016). Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer's disease. Neuropeptides, 58, 111–125. https://doi.org/10.1016/j.npep.2016.03.002.
  • Wang, T., Zheng, L., & Zhang, W. (2021). Hesperidin alleviates bupivacaine anesthesia-induced neurotoxicity in SH-SY5Y cells by regulating apoptosis and oxidative damage. Journal Of Biochemical and Molecular Toxicology, 35(7), e22787. https://doi.org/10.1002/jbt.22787.
  • Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal af Cell Biology, 217(6), 1915–1928. https://doi.org/10.1083/jcb.201708007.
  • Wang, S., Xia, B., Qiao, Z., Duan, L., Wang, G., Meng, W., Liu, Z., Wang, Y., & Zhang, M. (2019). Tetramethylpyrazine attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells through regulating apoptosis, autophagy and oxidative damage. Drug Design, Development and Therapy, 13, 1187–1196. https://doi.org/10.2147/DDDT.S196172.
  • Wen, X., Xu, S., Liu, H., Zhang, Q., Liang, H., Yang, C., & Wang, H. (2013). Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. Plos One, 8(5), e62942. https://doi.org/10.1371/journal.pone.0062942 (Retraction published PLoS One. 2020 Aug 25;15(8): e0238400)
  • Werdehausen, R., Fazeli, S., Braun, S., Hermanns, H., Essmann, F., Hollmann, M. W., Bauer, I., & Stevens, M. F. (2009). Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. British Journal of Anaesthesia, 103(5), 711–718. https://doi.org/10.1093/bja/aep236.
  • Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. https://doi.org/10.1016/S0963-9969(00)00068-5.
  • Xiao, J., Zhai, H., Yao, Y., Wang, C., Jiang,W., Zhang, C., Simard, A.R., Zhang, R., & Hao, J. (2014). Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neurosci, 262, 156e164. https://doi.org/10.1016/j.neuroscience.2014.01.004.
  • Yu, X. J., Zhao, W., Li, Y. J., Li, F. X., Liu, Z. J., Xu, H. L., Lai, L. Y., Xu, R., & Xu, S. Y. (2017). Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine. Scientific Reports, 7, 45316. https://doi.org/10.1038/srep45316.
  • Zhang, H., Wang, W., & Du, Q. (2019). Andrographolide attenuates bupivacaine-induced cytotoxicity in SH-SY5Y cells through preserving Akt/mTOR activity. Drug Design, Development and Therapy, 13, 1659–1666. https://doi.org/10.2147/DDDT.S201122.
  • Zhang, Y., Zhao, J., Afzal, O., Kazmi, I., Al-Abbasi, F. A., Altamimi, A. S. A., & Yang, Z. (2021). Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. Journal of Biochemical and Molecular Toxicology, 35(2), e22634. https://doi.org/10.1002/jbt.22634.
  • Zhang, Z., Li, G., Szeto, S. S. W., Chong, C. M., Quan, Q., Huang, C., Cui, W., Guo, B., Wang, Y., Han, Y., Michael Siu, K. W., Yuen Lee, S. M., & Chu, I. K. (2015). Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology & Medicine, 84, 331–343. https://doi.org/10.1016/j.freeradbiomed.2015.02.030.
  • Zhao, T., & Wang, Q. (2020). Capillarisin protects SH-SY5Y cells against bupivacaine-induced apoptosis via ROS-mediated PI3K/PKB pathway. Life Sciences, 259, 118279. https://doi.org/10.1016/j.lfs.2020.118279.

Neuroprotective role of chrysin against bupivacaine induced apoptosis and oxidative stress in SH-SY5Y cell line

Year 2023, , 24 - 30, 30.06.2023
https://doi.org/10.38042/biotechstudies.1273778

Abstract

Chrysin, a natural flavonoid, has a strong neuroprotective effect in many neurodegenerative diseases. Therefore, we aimed to investigate the neuroprotective effect of chrysin against bupivacaine-induced neurotoxicity in SH-SY5Y cells. According to the results of XTT analysis, the non-toxic concentration of chrysin was determined and the cells were treated with bupivacaine alone and together with this determined chrysin dose. According to the results of RT-qPCR analysis, the level of caspases increased in the group treated with only bupivacaine compared to the control group, while the expression of antioxidant enzymes decreased. When compared with the group treated with bupivacaine alone, it was determined that while the expression of caspases decreased in the group in which bupivacaine and chrysin were treated together, the expression of antioxidant enzymes increased. According to the ELISA results, SOD and CAT activities were decreased in the group treated with bupivacaine alone compared to the control group. SOD and CAT activities increased in the presence of chrysin treated with bupivacaine compared to the group treated with bupivacaine alone. The obtained data showed that chrysin may play a neuroprotective role by inducing the expression of antioxidant enzymes while inhibiting apoptosis against bupivacaine-induced neurotoxicity in SH-SY5Y cells.

References

  • Ahad, A., Ganai, A. A., Mujeeb, M., & Siddiqui, W. A. (2014). Chrysin, an antiinflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 279, 1e7. https://doi.org/10.1016/j.taap.2014.05.007.
  • Ardon, A. E., Prasad, A., McClain, R. L., Melton, M. S., Nielsen, K. C., & Greengrass, R. (2019). Regional Anesthesia for Ambulatory Anesthesiologists. Anesthesiology Clinics, 37(2), 265–287. https://doi.org/10.1016/j.anclin.2019.01.005.
  • Belli, S., Rossi, M., Molasky, N., Middleton, L., Caldwell, C., Bartow-McKenney, C., Duong, M., Chiu, J., Gibbs, E., Caldwell, A., Gahn, C., & Caruso, F. (2019). Effective and Novel Application of Hydrodynamic Voltammetry to the Study of Superoxide Radical Scavenging by Natural Phenolic Antioxidants. Antioxidants (Basel, Switzerland), 8(1), 14. https://doi.org/10.3390/antiox8010014.
  • Bouderba, S., Sanz, M. N., Sánchez-Martín, C., El-Mir, M. Y., Villanueva, G. R., Detaille, D., & Koceïr, E. A. (2012). Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model. Experimental Diabetes Research, 2012, 430176. https://doi.org/10.1155/2012/430176.
  • Çınar Ayan, İ., Güçlü, E., Vural, H., & Dursun, H. G. (2022). Piceatannol induces apoptotic cell death through activation of caspase-dependent pathway and upregulation of ROS-mediated mitochondrial dysfunction in pancreatic cancer cells. Molecular Biology Reports, 49(12), 11947–11957. https://doi.org/10.1007/s11033-022-08006-8.
  • Dhanalakshmi, C., Manivasagam, T., Nataraj, J., Justin Thenmozhi, A., & Essa, M. M. (2015). Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Evidence-Based Complementary and Alternative Medicine: eCAM, 2015, 626028. https://doi.org/10.1155/2015/626028.
  • El-Sisi, A. E., El-Sayad, M. E., & Abdelsalam, N. M. (2017). Protective effects of mirtazapine and chrysin on experimentally induced testicular damage in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 95, 1059–1066. https://doi.org/10.1016/j.biopha.2017.09.022.
  • Filho, C. B., Jesse, C. R., Donato, F., Giacomeli, R., Del Fabbro, L., da Silva Antunes, M., de Gomes, M. G., Goes, A. T., Boeira, S. P., Prigol, M., & Souza, L. C. (2015). Chronic unpredictable mild stress decreases BDNF and NGF levels and Na (+), K (+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience, 289, 367–380. https://doi.org/10.1016/j.neuroscience.2014.12.048.
  • Güçlü, E., Ayan, İ. Ç., & Vural, H. (2022). Inhibitory effect of AK-7 mediates by apoptosis, increases DNA fragmentation and caspase-3 activity in human glioblastoma multiforme cells. Bangladesh Journal of Pharmacology, 17(2), 42-50. https://doi.org/10.3329/bjp.v17i2.59809.
  • Ji, J., Yan, X., Li, Z., Lai, Z., & Liu, J. (2015). Therapeutic effects of intrathecal versus intravenous monosialoganglioside against bupivacaine-induced spinal neurotoxicity in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 69, 311–316. https://doi.org/ 10.1016/j.biopha.2014.12.020.
  • Karthikeyan, S., Srinivasan, R., AfaqWani, S., & Manoharan, S. (2013). Chemopreventive potential of chrysin in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Int. J. Nutr. Pharmacol. Neurol. Dis. 3, 46e53. https://doi.org/10.4103/2231-0738.106993.
  • Kendall, M. C., Castro Alves, L. J., & De Oliveira, G., Jr (2018). Liposome Bupivacaine Compared to Plain Local Anesthetics to Reduce Postsurgical Pain: An Updated Meta-Analysis of Randomized Controlled Trials. Pain Research and Treatment, 2018, 5710169. https://doi.org/10.1155/2018/5710169.
  • Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., & Salimi, A. (2020). Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environmental Toxicology, 35(10), 1114–1124. https://doi.org/10.1002/tox.22947.
  • Li, L., Zhang, Q. G., Lai, L. Y., Wen, X. J., Zheng, T., Cheung, C. W., Zhou, S. Q., & Xu, S. Y. (2013). Neuroprotective effect of ginkgolide B on bupivacaine-induced apoptosis in SH-SY5Y cells. Oxidative Medicine and Cellular Longevity, 2013, 159864. https://doi.org/10.1155/2013/159864.
  • Lim, W., Ryu, S., Bazer, F. W., Kim, S. M., & Song, G. (2018). Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. Journal of Cellular Physiology, 233(4), 3129–3140. https://doi.org/10.1002/jcp.26150.
  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795. https://doi.org/10.1038/nature05292.
  • Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187–196. https://doi.org/10.1016/j.phytochem.2017.09.016.
  • Mishra, A., Mishra, P. S., Bandopadhyay, R., Khurana, N., Angelopoulou, E., Paudel, Y. N., & Piperi, C. (2021). Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules (Basel, Switzerland), 26(21), 6456. https://doi.org/10.3390/molecules26216456.
  • Moldogazieva, N. T., Lutsenko, S. V., & Terentiev, A. A. (2018). Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Research, 78(21), 6040–6047. https://doi.org/10.1158/0008-5472.CAN-18-0980.
  • Nirmaladevi, D., Venkataramana, M., Chandranayaka, S., Ramesha, A., Jameel, N. M., & Srinivas, C. (2014). Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cellular and Molecular Neurobiology, 34(7), 973–985.
  • Niu, X., Chen, J., Wang, P., Zhou, H., Li, S., & Zhang, M. (2014). The effects of hispidulin on bupivacaine-induced neurotoxicity: role of AMPK signaling pathway. Cell Biochemistry and Biophysics, 70(1), 241–249. https://doi.org/ 10.1007/s12013-014-9888-5.
  • Parajuli, P., Joshee, N., Rimando, A. M., Mittal, S., & Yadav, A. K. (2009). In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Medica, 75(1), 41–48. https://doi.org/10.1055/s-0028-1088364.
  • Reddy S. P. (2008). The antioxidant response element and oxidative stress modifiers in airway diseases. Current Molecular Medicine, 8(5), 376–383. https://doi.org/10.2174/156652408785160925.
  • Samarghandian, S., Afshari, J. T., & Davoodi, S. (2011). Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (Sao Paulo, Brazil), 66(6), 1073–1079. https://doi.org/10.1590/s1807-59322011000600026.
  • Sathiavelu, J., Senapathy, G. J., Devaraj, R., & Namasivayam, N. (2009). Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. The Journal Of Pharmacy and Pharmacology, 61(6), 809–817. https://doi.org/10.1211/jpp/61.06.0015.
  • Song, J. H., Kim, Y. H., Lee, S. C., Kim, M. H., & Lee, J. H. (2016). Inhibitory Effect of Chrysin (5,7-Dihydroxyflavone) on Experimental Choroidal Neovascularization in Rats. Ophthalmic Research, 56(1), 49–55. https://doi.org/10.1159/000444929.
  • Souza, L. C., Antunes, M. S., Filho, C. B., Del Fabbro, L., de Gomes, M. G., Goes, A. T., Donato, F., Prigol, M., Boeira, S. P., & Jesse, C. R. (2015). Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacology, Biochemistry, and Behavior, 134, 22–30. https://doi.org/10.1016/j.pbb.2015.04.010.
  • Su, Z. Y., Shu, L., Khor, T. O., Lee, J. H., Fuentes, F., & Kong, A. N. (2013). A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Topics in Current Chemistry, 329, 133–162. https://doi.org/10.1007/128_2012_340.
  • Sukprasansap, M., Chanvorachote, P., & Tencomnao, T. (2020). Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate- induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells. BMC Complementary Medicine and Therapies, 20(1), 46. https://doi.org/10.1186/s12906-020-2819-7.
  • Vedagiri, A., & Thangarajan, S. (2016). Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer's disease. Neuropeptides, 58, 111–125. https://doi.org/10.1016/j.npep.2016.03.002.
  • Wang, T., Zheng, L., & Zhang, W. (2021). Hesperidin alleviates bupivacaine anesthesia-induced neurotoxicity in SH-SY5Y cells by regulating apoptosis and oxidative damage. Journal Of Biochemical and Molecular Toxicology, 35(7), e22787. https://doi.org/10.1002/jbt.22787.
  • Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. The Journal af Cell Biology, 217(6), 1915–1928. https://doi.org/10.1083/jcb.201708007.
  • Wang, S., Xia, B., Qiao, Z., Duan, L., Wang, G., Meng, W., Liu, Z., Wang, Y., & Zhang, M. (2019). Tetramethylpyrazine attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells through regulating apoptosis, autophagy and oxidative damage. Drug Design, Development and Therapy, 13, 1187–1196. https://doi.org/10.2147/DDDT.S196172.
  • Wen, X., Xu, S., Liu, H., Zhang, Q., Liang, H., Yang, C., & Wang, H. (2013). Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. Plos One, 8(5), e62942. https://doi.org/10.1371/journal.pone.0062942 (Retraction published PLoS One. 2020 Aug 25;15(8): e0238400)
  • Werdehausen, R., Fazeli, S., Braun, S., Hermanns, H., Essmann, F., Hollmann, M. W., Bauer, I., & Stevens, M. F. (2009). Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. British Journal of Anaesthesia, 103(5), 711–718. https://doi.org/10.1093/bja/aep236.
  • Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423-447. https://doi.org/10.1016/S0963-9969(00)00068-5.
  • Xiao, J., Zhai, H., Yao, Y., Wang, C., Jiang,W., Zhang, C., Simard, A.R., Zhang, R., & Hao, J. (2014). Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neurosci, 262, 156e164. https://doi.org/10.1016/j.neuroscience.2014.01.004.
  • Yu, X. J., Zhao, W., Li, Y. J., Li, F. X., Liu, Z. J., Xu, H. L., Lai, L. Y., Xu, R., & Xu, S. Y. (2017). Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine. Scientific Reports, 7, 45316. https://doi.org/10.1038/srep45316.
  • Zhang, H., Wang, W., & Du, Q. (2019). Andrographolide attenuates bupivacaine-induced cytotoxicity in SH-SY5Y cells through preserving Akt/mTOR activity. Drug Design, Development and Therapy, 13, 1659–1666. https://doi.org/10.2147/DDDT.S201122.
  • Zhang, Y., Zhao, J., Afzal, O., Kazmi, I., Al-Abbasi, F. A., Altamimi, A. S. A., & Yang, Z. (2021). Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. Journal of Biochemical and Molecular Toxicology, 35(2), e22634. https://doi.org/10.1002/jbt.22634.
  • Zhang, Z., Li, G., Szeto, S. S. W., Chong, C. M., Quan, Q., Huang, C., Cui, W., Guo, B., Wang, Y., Han, Y., Michael Siu, K. W., Yuen Lee, S. M., & Chu, I. K. (2015). Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology & Medicine, 84, 331–343. https://doi.org/10.1016/j.freeradbiomed.2015.02.030.
  • Zhao, T., & Wang, Q. (2020). Capillarisin protects SH-SY5Y cells against bupivacaine-induced apoptosis via ROS-mediated PI3K/PKB pathway. Life Sciences, 259, 118279. https://doi.org/10.1016/j.lfs.2020.118279.
There are 42 citations in total.

Details

Primary Language English
Subjects Microbiology
Journal Section Research Articles
Authors

İlknur Çınar Ayan This is me 0000-0002-8763-0480

Ebru Güçlü This is me 0000-0001-5330-6159

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Çınar Ayan, İ., & Güçlü, E. (2023). Neuroprotective role of chrysin against bupivacaine induced apoptosis and oxidative stress in SH-SY5Y cell line. Biotech Studies, 32(1), 24-30. https://doi.org/10.38042/biotechstudies.1273778


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services