Research Article
BibTex RIS Cite
Year 2023, , 41 - 48, 31.12.2023
https://doi.org/10.38042/biotechstudies.1300663

Abstract

References

  • Awad, D., Tabod, I., Lutz, S., Wessolowski, H., & Gabel, D. (2005). Interaction of Na2B12H11SH with liposomes: Influence on zeta potential and particle size. Journal of organometallic chemistry, 690(11), 2732-2735. https://doi.org/10.1016/j.jorganchem.2005.01.013
  • Banerjee, R. (2001). Liposomes: applications in medicine. Journal of Biomaterials applications, 16(1), 3-21. https://doi.org/10.1106/RA7U-1V9C-RV7C-8QXL
  • Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. Am. J. Clin. Pathol., 45, 493-496.
  • Baytop, T. (1984). Therapy with medicinal plants in Turkey. Istanbul, CA.: Faculty of Pharmacy Pub.
  • Betz, G., Aeppli, A., Menshutina, N., & Leuenberger, H. (2005). In vivo comparison of various liposome formulations for cosmetic application, International journal of pharmaceutics, 296(1-2), 44-54. https://doi.org/10.1016/j.ijpharm.2005.02.032
  • Bozorgi, M., Memariani, Z., Mobli, M., Salehi Surmaghi, M. H., Shams-Ardekani, M. R., & Rahimi, R. (2013). Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjukand P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/219815
  • Carugo, D., Bottaro, E., Owen, J., Stride, E., & Nastruzzi, C. (2016). Liposome production by microfluidics: potential and limiting factors. Scientific reports, 6, 25876. https://doi.org/10.1038/srep25876 CLSI, W. (2006). Clinical and laboratory standards institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approve Standard M7-A7, CLSI, seventh edition, PA, USA.
  • Cui, H., Zhao, C., & Lin, L. (2015). The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu, Food Control, 56 (2015), 128-134. https://doi.org/10.1016/j.foodcont.2015.03.026
  • da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides, Trends in Food Science & Technology, 21(6), 284-292. https://doi.org/10.1016/j.tifs.2010.03.003
  • de Mello, M. B., da Silva Malheiros, P., Brandelli, A., Pesce da Silveira, N., Jantzen, M. M., & de Souza da Motta, A. (2013). Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics and antimicrobial proteins, 5, 43-50. https://doi.org/10.1007/s12602-013-9125-3
  • Demircan, E. (2016). Liposome Encapsulation of Phenolic Compounds Obtained from Apple Peels (Doctoral thesis). Istanbul Technical University, Institute of Science and Technology, Istanbul.
  • Doğan, C., Çelik, Ș., & Doğan, N. (2017). Determination of total phenolic compound amounts and antioxidant activities of Siirt region Melengic. Harran Tarım ve Gıda Bilimleri Dergisi/Harran Journal of Agricultural and Food Science, 21(3), 293-298. https://doi.org/10.29050/harranziraat.339340
  • Duman, G., Aslan, İ., Yekta Özer, A., İnanç, İ., & Taralp, A. (2014). Liposome, gel and lipogelosome formulations containing sodium hyaluronate. Journal of liposome research, 24(4), 259-269. https://doi.org/10.3109/08982104.2014.907305
  • Durak, M. Z., & Uçak, G. (2015). Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turkish Journal of Agriculture and Forestry, 39(1), 10-19. https://doi.org/10.3906/tar-1403-63
  • Engel, J. B., Heckler, C., Tondo, E. C., Daroit, D. J., & da Silva Malheiros, P. (2017). Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. International journal of food microbiology, 252, 18-23. https://doi.org/10.1016/j.ijfoodmicro.2017.04.003
  • Ferreira, M., Ogren, M., Dias, J. N., Silva, M., Gil, S., Tavares, L., & Aguiar, S. I. (2021). Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules, 26(7), 2047. https://doi.org/10.3390/molecules26072047
  • Gibbs F., Kermasha S., Alli I., Mulligan C.N., B. (1999). Encapsulation in the food industry: a review. International journal of food sciences and nutrition, 50(3), 213-224. https://doi.org/10.1080/096374899101256
  • Hafner, A., Lovrić, J., Pepić, I., & Filipović-Grčić, J. (2011). Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. Journal of microencapsulation, 28(8), 807-815. https://doi.org/10.3109/02652048.2011.622053
  • Heo, S. H., Park, S. I., Lee, J., Kim, M., & Shin, M. S. (2020). Antimicrobial Effect of Supercritical Robinia pseudo-acacia Leaf Extracts and Its Transdermal Delivery System with Cell Penetrating Peptide. International Journal of Advanced Culture Technology, 8(1), 226-235 https://doi.org/10.17703/IJACT.2020.8.1.226
  • Hintz, T., Matthews, K. K., & Di, R. (2015). The use of plant antimicrobial compounds for food preservation. BioMed research international, 2015. https://doi.org/10.1155/2015/246264
  • Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: nanotechnology, biology and medicine, 1(1), 22-30. https://doi.org/10.1016/j.nano.2004.11.009
  • Kamra, M., Diwan, A., & Sardana, S. (2018). Novel topical liposomal gel of benzoyl peroxide and resveratrol for treatment of acne. Asian Journal of Pharmaceutical Research and Development, 6(2), 27-42. https://doi.org/10.22270/ajprd.v6i2.362
  • Kavak, DD, Altıok, E., Bayraktar, O., & Ülkü, S. (2010). Pistacia terebinthus extract: As a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor. Journal of Molecular Catalysis B: Enzymatic, 64(3-4), 167-171. https://doi.org/10.1016/j.molcatb.2010.01.029
  • Kirtil, E., & Oztop, MH (2014). Liposome as Encapsulation Agent and Its Use in Foods: Structure, Characterization, Production and Stability. Academic Food Journal/Academic FOOD, 12(4).
  • Kumar, A., Dhiman, A., Suhag, R., Sehrawat, R., Upadhyay, A., & McClements, D. J. (2022). Comprehensive review on potential applications of microfluidization in food processing. Food Science and Biotechnology, 31, 17-36. https://doi.org/10.1007/s10068-021-01010-x
  • Lagacé, J., Dubreuil, M., & Montplaisir, S. (1991). Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa, Journal of microencapsulation, 8(1), 53-61. https://doi.org/10.3109/02652049109021857
  • Lopes, N. A., Pinilla, C. M. B., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9. https://doi.org/10.1016/j.foodhyd.2019.02.009
  • Low, W. L., Martin, C., Hill, D. J., & Kenward, M. A. (2013). Antimicrobial efficacy of liposome‐encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans, Letters in applied microbiology, 57(1), 33-39. https://doi.org/10.1111/lam.12082
  • Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64, 102605 https://doi.org/10.1016/j.jddst.2021.102605
  • Martí, M., Rodríguez, R., Carreras, N., Lis, M., Valldeperas, J., Coderch, L., & Parra, J. L. (2012). Monitoring of the microcapsule/liposome application on textile fabrics, Journal of the Textile Institute, 103(1), 19-27. https://doi.org/10.1080/00405000.2010.542011
  • Mozafari, MR, Flanagan, J., Matia - Merino, L., Awati, A., Omri, A., Suntres, ZE., & Singh, H. (2006). Recent trends in the lipid ‐ based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038-2045. https://doi.org/10.1002/jsfa.2576
  • Nii, T., & Ishii, F. (2005). Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. International journal of pharmaceutics, 298(1), 198-205. https://doi.org/10.1016/j.ijpharm.2005.04.029
  • Pelvan, E., & Demİrtaș, İ. (2018). Determination of fatty acid, sterol, tocol compositions, total phenolic contents and antioxidant activities of turpentine (Pistacia terebinthus L.) and pistachio (Pistacia vera) oils grown in Turkey. GIDA-Journal of Food, 43(3), 384-392. https://doi.org/10.15237/gida.GD18017
  • Pierre, M. B. R., & dos Santos Miranda Costa, I. (2011). Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Archives of dermatological research, 303, 607-621. https://doi.org/10.1007/s00403-011-1166-4
  • Puglia, C., & Bonina, F. (2012). Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opinion on Drug Delivery, 9(4), 429-441. https://doi.org/10.1517/17425247.2012.666967
  • Sethi, M. H. H. B. A., Rasool, F., & Khurram, M. (2011). Antibacterial activity analysis of extracts of various plants against gram-positive and-negative bacteria. African Journal of Pharmacy and Pharmacology, 5(7), 887-893.
  • Tohidi, M., Khayami, M., Nejati, V., & Meftahizade, H. (2011). Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. Journal of Medicinal Plants Research, 5(17), 4310-4314.
  • Tometri, S. S., Ahmady, M., Ariaii, P., & Soltani, M. S. (2020). Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef, Journal of Food Measurement and Characterization, 14(6), 3333-3344. https://doi.org/10.1007/s11694-020-00578-y
  • Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 4(2), 145-160. https://doi.org/10.1038/nrd1632
  • Ulrich, A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles, Bioscience reports, 22(2), 129-150. https://doi.org/10.1023/A:1020178304031
  • van Balen, G. P., Martinet, C. A. M., Caron, G., Bouchard, G., Reist, M., Carrupt, P. A., & Testa, B. (2004). Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Medicinal research reviews, 24(3), 299-324. https://doi.org/10.1002/med.10063
  • Vemuri, S., & Rhodes, C. T. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: a review, Pharmaceutica Acta Helvetiae, 70(2), 95-111. https://doi.org/10.1016/0031-6865(95)00010-7
  • Vuillemard, J. C. (1991). Recent advances in the large-scale production of lipid vesicles for use in food products:microfluidization, Journal of microencapsulation, 8(4), 547-562. https://doi.org/10.3109/02652049109021878
  • Were, L. M., Bruce, B., Davidson, P. M., & Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of food protection, 67(5), 922-927.
  • Zoghi, A., Khosravi-Darani, K., & Omri, A. (2018). Process variables and design of experiments in liposome and nanoliposome research. Mini reviews in medicinal chemistry, 18(4), 324-344. https://doi.org/10.2174/1389557516666161031120752
  • Zylberberg, C., & Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 23(9), 3319-3329. https://doi.org/10.1080/10717544.2016.1177136

The preparation, characterization, and antibacterial activity evaluation of nanoliposomes incorporated with terebinth extract

Year 2023, , 41 - 48, 31.12.2023
https://doi.org/10.38042/biotechstudies.1300663

Abstract

Nanoliposomes are drug release systems that increase bioavailability and are used for encapsulation of therapeutic active ingredients. Terebinth, which is a medicinal plant that grows in many parts of Türkiye, has antibacterial, antioxidant, and anti-inflammatory activity. The antibacterial activity of nanoliposomes incorporated with ethanol extract of terebinth leaves (TLE) was investigated to determine the effects of formulation.
The nanoliposome formulation was prepared in two steps which were high pressure and high intensity homogenization techniques. Characterization parameters (zeta potential, particle size and distribution, polydispersity index, and encapsulation efficiency) were determined. After third cycle of microfluidization, the zeta potential charge of nanoliposome dispersion was measured -66.6 mV and 91.13 nm in size. The PDI was 0.231. Also, the nanoliposome encapsulation efficiency was calculated as 91.90%. The TLE was encapsulated with nanoliposomes and their antibacterial activity was examined by disk diffusion and minimum inhibition concentration tests against Escherichia coli ATTC 25922 and Staphylococcus aureus ATTC 25923. Nanoliposome encapsulated TLE (NLTLE) has antibacterial activity against S. aureus ATTC 25923. While NLTLE has less active substance, it displays the same antibacterial activity as TLE.

References

  • Awad, D., Tabod, I., Lutz, S., Wessolowski, H., & Gabel, D. (2005). Interaction of Na2B12H11SH with liposomes: Influence on zeta potential and particle size. Journal of organometallic chemistry, 690(11), 2732-2735. https://doi.org/10.1016/j.jorganchem.2005.01.013
  • Banerjee, R. (2001). Liposomes: applications in medicine. Journal of Biomaterials applications, 16(1), 3-21. https://doi.org/10.1106/RA7U-1V9C-RV7C-8QXL
  • Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. Am. J. Clin. Pathol., 45, 493-496.
  • Baytop, T. (1984). Therapy with medicinal plants in Turkey. Istanbul, CA.: Faculty of Pharmacy Pub.
  • Betz, G., Aeppli, A., Menshutina, N., & Leuenberger, H. (2005). In vivo comparison of various liposome formulations for cosmetic application, International journal of pharmaceutics, 296(1-2), 44-54. https://doi.org/10.1016/j.ijpharm.2005.02.032
  • Bozorgi, M., Memariani, Z., Mobli, M., Salehi Surmaghi, M. H., Shams-Ardekani, M. R., & Rahimi, R. (2013). Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjukand P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/219815
  • Carugo, D., Bottaro, E., Owen, J., Stride, E., & Nastruzzi, C. (2016). Liposome production by microfluidics: potential and limiting factors. Scientific reports, 6, 25876. https://doi.org/10.1038/srep25876 CLSI, W. (2006). Clinical and laboratory standards institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approve Standard M7-A7, CLSI, seventh edition, PA, USA.
  • Cui, H., Zhao, C., & Lin, L. (2015). The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu, Food Control, 56 (2015), 128-134. https://doi.org/10.1016/j.foodcont.2015.03.026
  • da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides, Trends in Food Science & Technology, 21(6), 284-292. https://doi.org/10.1016/j.tifs.2010.03.003
  • de Mello, M. B., da Silva Malheiros, P., Brandelli, A., Pesce da Silveira, N., Jantzen, M. M., & de Souza da Motta, A. (2013). Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics and antimicrobial proteins, 5, 43-50. https://doi.org/10.1007/s12602-013-9125-3
  • Demircan, E. (2016). Liposome Encapsulation of Phenolic Compounds Obtained from Apple Peels (Doctoral thesis). Istanbul Technical University, Institute of Science and Technology, Istanbul.
  • Doğan, C., Çelik, Ș., & Doğan, N. (2017). Determination of total phenolic compound amounts and antioxidant activities of Siirt region Melengic. Harran Tarım ve Gıda Bilimleri Dergisi/Harran Journal of Agricultural and Food Science, 21(3), 293-298. https://doi.org/10.29050/harranziraat.339340
  • Duman, G., Aslan, İ., Yekta Özer, A., İnanç, İ., & Taralp, A. (2014). Liposome, gel and lipogelosome formulations containing sodium hyaluronate. Journal of liposome research, 24(4), 259-269. https://doi.org/10.3109/08982104.2014.907305
  • Durak, M. Z., & Uçak, G. (2015). Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turkish Journal of Agriculture and Forestry, 39(1), 10-19. https://doi.org/10.3906/tar-1403-63
  • Engel, J. B., Heckler, C., Tondo, E. C., Daroit, D. J., & da Silva Malheiros, P. (2017). Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. International journal of food microbiology, 252, 18-23. https://doi.org/10.1016/j.ijfoodmicro.2017.04.003
  • Ferreira, M., Ogren, M., Dias, J. N., Silva, M., Gil, S., Tavares, L., & Aguiar, S. I. (2021). Liposomes as antibiotic delivery systems: A promising nanotechnological strategy against antimicrobial resistance. Molecules, 26(7), 2047. https://doi.org/10.3390/molecules26072047
  • Gibbs F., Kermasha S., Alli I., Mulligan C.N., B. (1999). Encapsulation in the food industry: a review. International journal of food sciences and nutrition, 50(3), 213-224. https://doi.org/10.1080/096374899101256
  • Hafner, A., Lovrić, J., Pepić, I., & Filipović-Grčić, J. (2011). Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. Journal of microencapsulation, 28(8), 807-815. https://doi.org/10.3109/02652048.2011.622053
  • Heo, S. H., Park, S. I., Lee, J., Kim, M., & Shin, M. S. (2020). Antimicrobial Effect of Supercritical Robinia pseudo-acacia Leaf Extracts and Its Transdermal Delivery System with Cell Penetrating Peptide. International Journal of Advanced Culture Technology, 8(1), 226-235 https://doi.org/10.17703/IJACT.2020.8.1.226
  • Hintz, T., Matthews, K. K., & Di, R. (2015). The use of plant antimicrobial compounds for food preservation. BioMed research international, 2015. https://doi.org/10.1155/2015/246264
  • Hughes, G. A. (2005). Nanostructure-mediated drug delivery. Nanomedicine: nanotechnology, biology and medicine, 1(1), 22-30. https://doi.org/10.1016/j.nano.2004.11.009
  • Kamra, M., Diwan, A., & Sardana, S. (2018). Novel topical liposomal gel of benzoyl peroxide and resveratrol for treatment of acne. Asian Journal of Pharmaceutical Research and Development, 6(2), 27-42. https://doi.org/10.22270/ajprd.v6i2.362
  • Kavak, DD, Altıok, E., Bayraktar, O., & Ülkü, S. (2010). Pistacia terebinthus extract: As a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor. Journal of Molecular Catalysis B: Enzymatic, 64(3-4), 167-171. https://doi.org/10.1016/j.molcatb.2010.01.029
  • Kirtil, E., & Oztop, MH (2014). Liposome as Encapsulation Agent and Its Use in Foods: Structure, Characterization, Production and Stability. Academic Food Journal/Academic FOOD, 12(4).
  • Kumar, A., Dhiman, A., Suhag, R., Sehrawat, R., Upadhyay, A., & McClements, D. J. (2022). Comprehensive review on potential applications of microfluidization in food processing. Food Science and Biotechnology, 31, 17-36. https://doi.org/10.1007/s10068-021-01010-x
  • Lagacé, J., Dubreuil, M., & Montplaisir, S. (1991). Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa, Journal of microencapsulation, 8(1), 53-61. https://doi.org/10.3109/02652049109021857
  • Lopes, N. A., Pinilla, C. M. B., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9. https://doi.org/10.1016/j.foodhyd.2019.02.009
  • Low, W. L., Martin, C., Hill, D. J., & Kenward, M. A. (2013). Antimicrobial efficacy of liposome‐encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans, Letters in applied microbiology, 57(1), 33-39. https://doi.org/10.1111/lam.12082
  • Macit, M., Eyupoglu, O. E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64, 102605 https://doi.org/10.1016/j.jddst.2021.102605
  • Martí, M., Rodríguez, R., Carreras, N., Lis, M., Valldeperas, J., Coderch, L., & Parra, J. L. (2012). Monitoring of the microcapsule/liposome application on textile fabrics, Journal of the Textile Institute, 103(1), 19-27. https://doi.org/10.1080/00405000.2010.542011
  • Mozafari, MR, Flanagan, J., Matia - Merino, L., Awati, A., Omri, A., Suntres, ZE., & Singh, H. (2006). Recent trends in the lipid ‐ based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038-2045. https://doi.org/10.1002/jsfa.2576
  • Nii, T., & Ishii, F. (2005). Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. International journal of pharmaceutics, 298(1), 198-205. https://doi.org/10.1016/j.ijpharm.2005.04.029
  • Pelvan, E., & Demİrtaș, İ. (2018). Determination of fatty acid, sterol, tocol compositions, total phenolic contents and antioxidant activities of turpentine (Pistacia terebinthus L.) and pistachio (Pistacia vera) oils grown in Turkey. GIDA-Journal of Food, 43(3), 384-392. https://doi.org/10.15237/gida.GD18017
  • Pierre, M. B. R., & dos Santos Miranda Costa, I. (2011). Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Archives of dermatological research, 303, 607-621. https://doi.org/10.1007/s00403-011-1166-4
  • Puglia, C., & Bonina, F. (2012). Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opinion on Drug Delivery, 9(4), 429-441. https://doi.org/10.1517/17425247.2012.666967
  • Sethi, M. H. H. B. A., Rasool, F., & Khurram, M. (2011). Antibacterial activity analysis of extracts of various plants against gram-positive and-negative bacteria. African Journal of Pharmacy and Pharmacology, 5(7), 887-893.
  • Tohidi, M., Khayami, M., Nejati, V., & Meftahizade, H. (2011). Evaluation of antibacterial activity and wound healing of Pistacia atlantica and Pistacia khinjuk. Journal of Medicinal Plants Research, 5(17), 4310-4314.
  • Tometri, S. S., Ahmady, M., Ariaii, P., & Soltani, M. S. (2020). Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef, Journal of Food Measurement and Characterization, 14(6), 3333-3344. https://doi.org/10.1007/s11694-020-00578-y
  • Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 4(2), 145-160. https://doi.org/10.1038/nrd1632
  • Ulrich, A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles, Bioscience reports, 22(2), 129-150. https://doi.org/10.1023/A:1020178304031
  • van Balen, G. P., Martinet, C. A. M., Caron, G., Bouchard, G., Reist, M., Carrupt, P. A., & Testa, B. (2004). Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. Medicinal research reviews, 24(3), 299-324. https://doi.org/10.1002/med.10063
  • Vemuri, S., & Rhodes, C. T. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: a review, Pharmaceutica Acta Helvetiae, 70(2), 95-111. https://doi.org/10.1016/0031-6865(95)00010-7
  • Vuillemard, J. C. (1991). Recent advances in the large-scale production of lipid vesicles for use in food products:microfluidization, Journal of microencapsulation, 8(4), 547-562. https://doi.org/10.3109/02652049109021878
  • Were, L. M., Bruce, B., Davidson, P. M., & Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of food protection, 67(5), 922-927.
  • Zoghi, A., Khosravi-Darani, K., & Omri, A. (2018). Process variables and design of experiments in liposome and nanoliposome research. Mini reviews in medicinal chemistry, 18(4), 324-344. https://doi.org/10.2174/1389557516666161031120752
  • Zylberberg, C., & Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 23(9), 3319-3329. https://doi.org/10.1080/10717544.2016.1177136
There are 46 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Ali Yılmaz This is me 0000-0003-0442-6503

Nagihan Nizam This is me 0000-0002-7296-5050

Meltem Macit This is me 0000-0001-9925-2387

Gülengül Duman This is me 0000-0002-4289-1759

Münevver Müge Çağal This is me 0000-0002-1786-1216

Early Pub Date May 22, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Yılmaz, A., Nizam, N., Macit, M., Duman, G., et al. (2023). The preparation, characterization, and antibacterial activity evaluation of nanoliposomes incorporated with terebinth extract. Biotech Studies, 32(2), 41-48. https://doi.org/10.38042/biotechstudies.1300663


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services