Research Article
BibTex RIS Cite

Characterization of intracellular β-galactosidase from Bacillus subtilis 4NK and Bacillus paralicheniformis 5NK isolated from a hot water spring and effects of various inhibitors on enzyme activity

Year 2021, , 71 - 78, 15.12.2021
https://doi.org/10.38042/biotechstudies.953514

Abstract

In this study, the intracellular β-galactosidases of Bacillus subtilis 4NK and Bacillus paralicheniformis 5NK isolated from Bingöl Binkap hot spring was partially purified and characterized. As a result of purification, the yield of the enzyme for B. subtilis 4NK was 85.2% and the purification fold was 2.8. The yield for B. paralicheniformis 5NK was 76.8% and the purification fold was 2.0. The optimum temperature of the enzyme was determined as 45 oC for B. subtilis 4NK and 55 oC for B. paralicheniformis 5NK and the optimum pH was 6.0 for both. In addition, in the thermal stability experiments even at the end of 120 min both enzymes were stable at 50 oC. It was determined that the partially purified enzyme activity increased in the presence of iodoacetamide and phenylmethylsulfonylfluoride for B. subtilis 4NK, dithiothreitol, N-ethylenemaleimide and phenylmethylsulfonylfluoride for B. paralicheniformis 5NK. The metals were found to activate the enzyme at low concentrations of Co2+, Cd2+ and Mn2+ for B. subtilis 4NK, Cu2+ and Cd2+ were found to inhibit the enzyme at high rates for B. paralicheniformis 5NK. Km and Vmax values for 4NK and 5NK, respectively; 23.80 mM, 1.978 μmol/min and 5.61 mM, 1.869 μmol/min.

Supporting Institution

The Dicle University Scientific Research Projects Coordinator (DÜBAP)

Project Number

FEN.17.008 and FEN.17.009

References

  • Aslan, Z. 2018. Studies on bacterial enzymes isolated from thermal Resources. Dicle University, Master Thesis.http://acikerisim.dicle.edu.tr/xmlui/bitstream/handle/11468/4184/Termal%20kaynaklardan%20izole%20edilen%20bakterilerin%20enzimleri%20%C3%BCzerine%20%C3%A7al%C4%B1%C5%9Fmalar.pdf?sequence=1&isAllowed=y
  • Batra, N., Shing, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable -galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1- 6. https://doi.org/10.1042/ba20010091
  • Berger, J. L., Lee, B. H., & Lacroix, C. (1997). Purification, properties and characterization of a high-molecular-mass β-galactosidase isoenzyme from Thermus aquaticus YT-I. Biotechnology and Applied Biochemistry, 25(1), 29-41. https://doi.org/10.1111/j.1470-8744.1997.tb00411.x
  • Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2000). Purification and characterization of a novel β-galactosidase from Bacillus sp MTCC 3088. Journal of Industrial Microbiology and Biotechnology, 24(1), 58–63. https://doi.org/10.1038/sj.jim.2900770
  • Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2003). Production and partial characterization of a novel β-galactosidase from a newly isolated Bacillus polymxia. Scienctia Iranica, 10(3), 279–286.
  • D’Auria, S., Nucci, R., Gryczynski, I., Gryczynski, Z., & Lakowicz, J. R. (1999). The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformational dynamics at temperatures above 100 degrees C. Biophysical chemistry, 81(1), 23-31. https://doi.org/10.1016/S0301-4622(99)00086-1
  • Demirijian, D. C., Moris, F. V., & Cassidy, C. S. (2001). Enzymes from extremophiles. Current Opinion in Chemical Biology, 5(2), 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
  • Di Lauro, B., Strazzulli, A., Perugino, G., Cara, F. L., Bedini, E., Corsaro, M. M., Rossi, M., & Moracci, M. (2008). Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1784(2), 292-301. https://doi.org/10.1016/j.bbapap.2007.10.013
  • Du, Y., Ma, J., Yin, Z., Liu, K., Yao, G., Xu, W., Fan, L., Du, B., Ding, Y., & Wang, C. (2019). Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics, 20(1), 283. https://doi.org/10.1186/s12864-019-5646-9
  • Dunlap, C. A., Kwon, S. W., Rooney, A. P., & Kim, S. J. (2015). Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Journal of Systematic and Evolutionary Microbiology. 65(10), 3487-92. https://doi.org/10.1099/ijsem.0.000441
  • Gul Guven, R., Guven, K., Poli, A., & Nicolaus, B. (2007). Purification and some properties of a β- galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme and Microbial Technology, 40(6), 1570-1577. https://doi.org/10.1016/j.enzmictec.2006.11.006
  • Gul Guven, R., Kaplan, A., Guven, K., Matpan, F., & Doğru, M. (2011). Effects of Various Inhibitors on β-galactosidase Purified from the Thermoacidophilic Alicyclobacillus acidocaldarius Subsp. Rittmanni Isolated from Antarctica. Biotechnology and Bioprocess Engineering 16(1), 114-119. https://doi.org/10.1007/s12257-010-0070-7
  • Gurung, N., Ray, S., Bose, S. & Rai, V. A. (2013). Broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 329121. https://doi.org/10.1155/2013/329121
  • Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes a review. Bioresource Technology, 89(1), 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  • Hirata, H., Negoro, S., & Okada, H. (1985). High Production of Thermostable β-Galactosidase of Bacillus stearothermophilus in Bacillus subtilis. Applied and Environmental Microbiology, 49(6), 1547-1549. https://doi.org/10.1128/AEM.49.6.1547-1549.1985
  • Isobe, K., Takahashi, N., Chiba, S., Yamashita, M., Koyama, T. (2013a). Acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1, produces multiple forms of intracellular β-galactosidase. Journal of Bioscience and Bioengineering, 116(2), 171-174. https://doi.org/10.1016/j.jbiosc.2013.02.018
  • Isobe, K., Yamashita, M., Chiba, S., Takahashi, N., Koyama, T. (2013b) Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1. Journal of Bioscience and Bioengineering, 116(3),293-297. https://doi.org/10.1016/j.jbiosc.2013.03.012
  • Itoh, K., Toba, T., Itoh, T., & Adachi, S. (1993). Properties of β-galactosidase of Lactobacillus kefiranofaciens K–1 isolated from kefir grains. Letters in Applied Microbiology, 15(5), 232-234. https://doi.org/10.1111/j.1472-765X.1992.tb00771.x
  • Kambourova, M. (2018). Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Engineering in life sciences, 18(11), 758–767. https://doi.org/10.1002/elsc.201800022
  • Kıran, E. Ö., Çömlekçioğlu, U., & Dostbil, N. (2006). Some Microbial Enzymes and Usage Fields in Industry. KSU Journal of Science and Engineering, 9(1), 12-19.
  • Lacal, J., García-Fontana, C., Muñoz-Martínez, F., Ramos, J. L., & Krell, T. (2010). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environmental Microbiology, 12(11), 2873-84. https://doi.org/10.1111/j.1462-2920.2010.02325.x.
  • Ladero, M., Perez, M., Santos, A., & Garcia-Ochoa, F. (2002). Hydrolysis of lactose by free and immobilized β-galactosidase from Thermus sp. strain T2. Biotechnology and Bioengineering, 81(2), 241–52. https://doi.org/10.1002/bit.10466
  • Levin, R. E., & Mahoney, R. R. (1981). Purification and characterization of β-galactosidase from a strain of Bacillus coagulans. Antonie van Leeuwenhoek, 47(1), 53-64. https://doi.org/10.1007/BF00399066
  • Loveland, J., Gutshall, K., Kasmir, J., Prema, P., & Brenchley. J. E. (1994). Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Applied and Environmental Microbiology, 60(1), 12–18. https://doi.org/10.1128/AEM.60.1.12-18.1994
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Lu, L., Xiao, M., Xu, X., Li, Z., & Li, Y. (2007). A novel β-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochemical and Biophysical Research Communications, 356(1), 78-84. https://doi.org/10.1016/j.bbrc.2007.02.106
  • Martarello, R. D., Cunha, L., Cardoso, S. L., Medeiros de Freitas, M., Silveira, D., Fonseca-Bazzo, Y. M., Homem-de-Mello, M., Filho, E. X. F., & Oliveira-Magalhães, P. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1), 1-13. https://doi.org/10.1186/s13568-019-0805-6
  • Matpan Bekler, F., Stougaard, P., Guven, K., Gul Guven, R., & Acer, O. (2015). Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9. Cellular & Molecular Biology, 61(3), 71-78. https://doi.org/10.14715/cmb/2015.61.3.14
  • Matpan Bekler, F., Yalaz, S., Acer, O., & Guven, K. (2017). Purification of thermostable β-galactosidase from Anoxybacillus sp. KP1 and estimation of combined effect of some chemicals on enzyme activity using semiparametric errors in variables model. Fresenius Environmental Bulletin, 26(3), 2251-2259.
  • Matpan Bekler, F., Yalaz, S., Gul Guven, R., Acer, O., & Guven, K. (2018). Characterization of Thermostable β-Galactosidase from Anoxybacillus ayderensis and Optimal Design for Enzyme Inhibition using Semiparametric EIV Models. The Online Journal of Science and Technology, 8(2), 32-38.
  • Neri, D. F., Balcão, V. M., Carneiro-Da-Cunha, M. G., Jr, L. B. C., & Teixeira, J. A. (2008). Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catalysis Communications, 9(14), 2334-9. https://doi.org/10.1016/j.catcom.2008.05.022
  • Ohtsu, N., Motoshima, H., Goto, K., Tsukasaki, F., & Matsuzawa, H. (1998). Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4: Enzyme purification and characterization, and gene cloning and sequencing. Bioscience Biotechnology and Biochemistry, 62(8), 1539-45. https://doi.org/10.1271/bbb.62.1539
  • O’Connell, S., & Walsh, G. (2008). Application relevant studies of fungal β-galactosidases with potential application in the alleviation of lactose intolerance. Applied Biochemistry and Biotechnology, 149(2), 129-138. https://doi.org/10.1007/s12010-007-8098-7
  • O’Connell, S., & Walsh, G. (2010). A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Applied Microbiology and Biotechnology, 86(2), 517-524. https://doi.org/10.1007/s00253-009-2270-7
  • Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology & Biotechnology, 81(4), 530-543. https://doi.org/10.1002/jctb.1453
  • Phan Trân, L. S. P., Szabo, L., Fülüp, L., Orosz, L., Sık, T., & Holczinger A. (1998). Isolation of β-galactosidase-encoding gene from Bacillus licheniformis: Purification and characterization of the recombinant enzyme expresed in Echerichia coli. Current Microbiology, 37(1), 39-43. https://doi.org/10.1007/s002849900334
  • Poli, A., Esposito, E., Lama, L., Orlando, P., Niccolaus, A. F., Gambacorta, A., & Nicolaus, B. (2006). Anoxybacillus amylolyticus sp. nov.,a Thermophilic Amylase Producing Bacterium Isolated from Mount Rittmann (Antarctica). Systematic and Applied Microbiology, 29(4), 300-307. https://doi.org/10.1016/j.syapm.2005.10.003
  • Reed, C. J., Lewis, H., Trejo, E., Winston, V., & Evilia, C. (2013). Protein adaptations in archaeal extremophiles. Archaea, 2013, 373275. https://doi.org/10.1155/2013/373275
  • Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., De Leon, A. L., Xiang, H., Gusti, V., Clausen, I. G., Olsen, P. B., Rasmussen, M. D., Andersen, J. T., Jorgensen, P. L., Larsen, T. S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S. D., & Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 5, R77. https://doi.org/10.1186/gb-2004-5-10-r77
  • Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79. https://doi.org/10.1007/s13205-017-0645-5
  • Shaikh, S. A., Khire, J. M., Khan, M. I. (1999). Characterization of a thermostable extracellular β-galactosidase from a thermophilic fungus Rhizomucor sp. Biochimica et Biophysica Acta, 1472(1-2), 314-322. https://doi.org/10.1016/S0304-4165(99)00138-5
  • Shaikhan, B. A., Guven, K., Matpan Bekler, F., Acer, O., & Gul Guven, R. (2020). A highly inducible β-galactosidase from Enterobacter sp. Journal of The Serbian Chemical Society, 85(5), 609–622. https://doi.org/10.2298/JSC190711141S
  • Shipkowski, S., & Brenchley, J. E. (2006). Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 β-galactosidases are arabinogalactan type I oligomer hydrolases. Applied and Environmental Microbiology, 72(12), 7730–8. https://doi.org/10.1128/AEM.01306-06
  • Somkuti, G. A., & Steinberg, D. H. (1979). Beta-D-galactoside galactohydrolase of Streptococcus thermophilus: induction, purification, and properties. Journal of Applied Biochemistry, 1, 357-368. https://doi.org/10.1016/0141-0229(94)90121-X
  • Topal, Ş. (1988). Microbial Enzymes and Developments in Rennin Production by Biotechnological Methods (in Turkish). Gıda, 13(3), 183-190.
  • Torres, M. J, & Lee, B. H. (1995). Cloning and expression of β-galactosidase from psychotrophic Bacillus subtilis KL88 into Escherichia coli. Biotechnology Letters, 17(2), 123-8. https://doi.org/10.1007/BF00127974
  • Vetere, A., & Paoletti, S. (1998). Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta (BBA)-General Subjects, 1380(2), 223-31. https://doi.org/10.1016/S0304-4165(97)00145-1
  • Yalaz, S., Matpan Bekler, F., & Acer, O. (2019). Combined effects of some chemicals on –galactosidase activity using a new semiparametric errors in variables model. Banat’s Journal of Biotechnology, 10(19), 42-50. https://doi.org/10.7904/2068-4738-X(19)-42
Year 2021, , 71 - 78, 15.12.2021
https://doi.org/10.38042/biotechstudies.953514

Abstract

Project Number

FEN.17.008 and FEN.17.009

References

  • Aslan, Z. 2018. Studies on bacterial enzymes isolated from thermal Resources. Dicle University, Master Thesis.http://acikerisim.dicle.edu.tr/xmlui/bitstream/handle/11468/4184/Termal%20kaynaklardan%20izole%20edilen%20bakterilerin%20enzimleri%20%C3%BCzerine%20%C3%A7al%C4%B1%C5%9Fmalar.pdf?sequence=1&isAllowed=y
  • Batra, N., Shing, J., Banerjee, U. C., Patnaik, P. R., & Sobti, R. C. (2002). Production and characterization of a thermostable -galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry, 36(1), 1- 6. https://doi.org/10.1042/ba20010091
  • Berger, J. L., Lee, B. H., & Lacroix, C. (1997). Purification, properties and characterization of a high-molecular-mass β-galactosidase isoenzyme from Thermus aquaticus YT-I. Biotechnology and Applied Biochemistry, 25(1), 29-41. https://doi.org/10.1111/j.1470-8744.1997.tb00411.x
  • Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2000). Purification and characterization of a novel β-galactosidase from Bacillus sp MTCC 3088. Journal of Industrial Microbiology and Biotechnology, 24(1), 58–63. https://doi.org/10.1038/sj.jim.2900770
  • Chakraborti, S., Sani, R. K., Banerjee, U. C., & Sobti, R. C. (2003). Production and partial characterization of a novel β-galactosidase from a newly isolated Bacillus polymxia. Scienctia Iranica, 10(3), 279–286.
  • D’Auria, S., Nucci, R., Gryczynski, I., Gryczynski, Z., & Lakowicz, J. R. (1999). The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformational dynamics at temperatures above 100 degrees C. Biophysical chemistry, 81(1), 23-31. https://doi.org/10.1016/S0301-4622(99)00086-1
  • Demirijian, D. C., Moris, F. V., & Cassidy, C. S. (2001). Enzymes from extremophiles. Current Opinion in Chemical Biology, 5(2), 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
  • Di Lauro, B., Strazzulli, A., Perugino, G., Cara, F. L., Bedini, E., Corsaro, M. M., Rossi, M., & Moracci, M. (2008). Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: Identification of the active site residues. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1784(2), 292-301. https://doi.org/10.1016/j.bbapap.2007.10.013
  • Du, Y., Ma, J., Yin, Z., Liu, K., Yao, G., Xu, W., Fan, L., Du, B., Ding, Y., & Wang, C. (2019). Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics, 20(1), 283. https://doi.org/10.1186/s12864-019-5646-9
  • Dunlap, C. A., Kwon, S. W., Rooney, A. P., & Kim, S. J. (2015). Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Journal of Systematic and Evolutionary Microbiology. 65(10), 3487-92. https://doi.org/10.1099/ijsem.0.000441
  • Gul Guven, R., Guven, K., Poli, A., & Nicolaus, B. (2007). Purification and some properties of a β- galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica. Enzyme and Microbial Technology, 40(6), 1570-1577. https://doi.org/10.1016/j.enzmictec.2006.11.006
  • Gul Guven, R., Kaplan, A., Guven, K., Matpan, F., & Doğru, M. (2011). Effects of Various Inhibitors on β-galactosidase Purified from the Thermoacidophilic Alicyclobacillus acidocaldarius Subsp. Rittmanni Isolated from Antarctica. Biotechnology and Bioprocess Engineering 16(1), 114-119. https://doi.org/10.1007/s12257-010-0070-7
  • Gurung, N., Ray, S., Bose, S. & Rai, V. A. (2013). Broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013, 329121. https://doi.org/10.1155/2013/329121
  • Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes a review. Bioresource Technology, 89(1), 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  • Hirata, H., Negoro, S., & Okada, H. (1985). High Production of Thermostable β-Galactosidase of Bacillus stearothermophilus in Bacillus subtilis. Applied and Environmental Microbiology, 49(6), 1547-1549. https://doi.org/10.1128/AEM.49.6.1547-1549.1985
  • Isobe, K., Takahashi, N., Chiba, S., Yamashita, M., Koyama, T. (2013a). Acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1, produces multiple forms of intracellular β-galactosidase. Journal of Bioscience and Bioengineering, 116(2), 171-174. https://doi.org/10.1016/j.jbiosc.2013.02.018
  • Isobe, K., Yamashita, M., Chiba, S., Takahashi, N., Koyama, T. (2013b) Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1. Journal of Bioscience and Bioengineering, 116(3),293-297. https://doi.org/10.1016/j.jbiosc.2013.03.012
  • Itoh, K., Toba, T., Itoh, T., & Adachi, S. (1993). Properties of β-galactosidase of Lactobacillus kefiranofaciens K–1 isolated from kefir grains. Letters in Applied Microbiology, 15(5), 232-234. https://doi.org/10.1111/j.1472-765X.1992.tb00771.x
  • Kambourova, M. (2018). Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Engineering in life sciences, 18(11), 758–767. https://doi.org/10.1002/elsc.201800022
  • Kıran, E. Ö., Çömlekçioğlu, U., & Dostbil, N. (2006). Some Microbial Enzymes and Usage Fields in Industry. KSU Journal of Science and Engineering, 9(1), 12-19.
  • Lacal, J., García-Fontana, C., Muñoz-Martínez, F., Ramos, J. L., & Krell, T. (2010). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environmental Microbiology, 12(11), 2873-84. https://doi.org/10.1111/j.1462-2920.2010.02325.x.
  • Ladero, M., Perez, M., Santos, A., & Garcia-Ochoa, F. (2002). Hydrolysis of lactose by free and immobilized β-galactosidase from Thermus sp. strain T2. Biotechnology and Bioengineering, 81(2), 241–52. https://doi.org/10.1002/bit.10466
  • Levin, R. E., & Mahoney, R. R. (1981). Purification and characterization of β-galactosidase from a strain of Bacillus coagulans. Antonie van Leeuwenhoek, 47(1), 53-64. https://doi.org/10.1007/BF00399066
  • Loveland, J., Gutshall, K., Kasmir, J., Prema, P., & Brenchley. J. E. (1994). Characterization of psychrotrophic microorganisms producing β-galactosidase activities. Applied and Environmental Microbiology, 60(1), 12–18. https://doi.org/10.1128/AEM.60.1.12-18.1994
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Lu, L., Xiao, M., Xu, X., Li, Z., & Li, Y. (2007). A novel β-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochemical and Biophysical Research Communications, 356(1), 78-84. https://doi.org/10.1016/j.bbrc.2007.02.106
  • Martarello, R. D., Cunha, L., Cardoso, S. L., Medeiros de Freitas, M., Silveira, D., Fonseca-Bazzo, Y. M., Homem-de-Mello, M., Filho, E. X. F., & Oliveira-Magalhães, P. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1), 1-13. https://doi.org/10.1186/s13568-019-0805-6
  • Matpan Bekler, F., Stougaard, P., Guven, K., Gul Guven, R., & Acer, O. (2015). Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9. Cellular & Molecular Biology, 61(3), 71-78. https://doi.org/10.14715/cmb/2015.61.3.14
  • Matpan Bekler, F., Yalaz, S., Acer, O., & Guven, K. (2017). Purification of thermostable β-galactosidase from Anoxybacillus sp. KP1 and estimation of combined effect of some chemicals on enzyme activity using semiparametric errors in variables model. Fresenius Environmental Bulletin, 26(3), 2251-2259.
  • Matpan Bekler, F., Yalaz, S., Gul Guven, R., Acer, O., & Guven, K. (2018). Characterization of Thermostable β-Galactosidase from Anoxybacillus ayderensis and Optimal Design for Enzyme Inhibition using Semiparametric EIV Models. The Online Journal of Science and Technology, 8(2), 32-38.
  • Neri, D. F., Balcão, V. M., Carneiro-Da-Cunha, M. G., Jr, L. B. C., & Teixeira, J. A. (2008). Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catalysis Communications, 9(14), 2334-9. https://doi.org/10.1016/j.catcom.2008.05.022
  • Ohtsu, N., Motoshima, H., Goto, K., Tsukasaki, F., & Matsuzawa, H. (1998). Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4: Enzyme purification and characterization, and gene cloning and sequencing. Bioscience Biotechnology and Biochemistry, 62(8), 1539-45. https://doi.org/10.1271/bbb.62.1539
  • O’Connell, S., & Walsh, G. (2008). Application relevant studies of fungal β-galactosidases with potential application in the alleviation of lactose intolerance. Applied Biochemistry and Biotechnology, 149(2), 129-138. https://doi.org/10.1007/s12010-007-8098-7
  • O’Connell, S., & Walsh, G. (2010). A novel acid-stable, acid-active β-galactosidase potentially suited to the alleviation of lactose intolerance. Applied Microbiology and Biotechnology, 86(2), 517-524. https://doi.org/10.1007/s00253-009-2270-7
  • Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., Kumar, H. (2006). Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemical Technology & Biotechnology, 81(4), 530-543. https://doi.org/10.1002/jctb.1453
  • Phan Trân, L. S. P., Szabo, L., Fülüp, L., Orosz, L., Sık, T., & Holczinger A. (1998). Isolation of β-galactosidase-encoding gene from Bacillus licheniformis: Purification and characterization of the recombinant enzyme expresed in Echerichia coli. Current Microbiology, 37(1), 39-43. https://doi.org/10.1007/s002849900334
  • Poli, A., Esposito, E., Lama, L., Orlando, P., Niccolaus, A. F., Gambacorta, A., & Nicolaus, B. (2006). Anoxybacillus amylolyticus sp. nov.,a Thermophilic Amylase Producing Bacterium Isolated from Mount Rittmann (Antarctica). Systematic and Applied Microbiology, 29(4), 300-307. https://doi.org/10.1016/j.syapm.2005.10.003
  • Reed, C. J., Lewis, H., Trejo, E., Winston, V., & Evilia, C. (2013). Protein adaptations in archaeal extremophiles. Archaea, 2013, 373275. https://doi.org/10.1155/2013/373275
  • Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., De Leon, A. L., Xiang, H., Gusti, V., Clausen, I. G., Olsen, P. B., Rasmussen, M. D., Andersen, J. T., Jorgensen, P. L., Larsen, T. S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S. D., & Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 5, R77. https://doi.org/10.1186/gb-2004-5-10-r77
  • Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1), 79. https://doi.org/10.1007/s13205-017-0645-5
  • Shaikh, S. A., Khire, J. M., Khan, M. I. (1999). Characterization of a thermostable extracellular β-galactosidase from a thermophilic fungus Rhizomucor sp. Biochimica et Biophysica Acta, 1472(1-2), 314-322. https://doi.org/10.1016/S0304-4165(99)00138-5
  • Shaikhan, B. A., Guven, K., Matpan Bekler, F., Acer, O., & Gul Guven, R. (2020). A highly inducible β-galactosidase from Enterobacter sp. Journal of The Serbian Chemical Society, 85(5), 609–622. https://doi.org/10.2298/JSC190711141S
  • Shipkowski, S., & Brenchley, J. E. (2006). Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 β-galactosidases are arabinogalactan type I oligomer hydrolases. Applied and Environmental Microbiology, 72(12), 7730–8. https://doi.org/10.1128/AEM.01306-06
  • Somkuti, G. A., & Steinberg, D. H. (1979). Beta-D-galactoside galactohydrolase of Streptococcus thermophilus: induction, purification, and properties. Journal of Applied Biochemistry, 1, 357-368. https://doi.org/10.1016/0141-0229(94)90121-X
  • Topal, Ş. (1988). Microbial Enzymes and Developments in Rennin Production by Biotechnological Methods (in Turkish). Gıda, 13(3), 183-190.
  • Torres, M. J, & Lee, B. H. (1995). Cloning and expression of β-galactosidase from psychotrophic Bacillus subtilis KL88 into Escherichia coli. Biotechnology Letters, 17(2), 123-8. https://doi.org/10.1007/BF00127974
  • Vetere, A., & Paoletti, S. (1998). Separation and characterization of three β-galactosidases from Bacillus circulans. Biochimica et Biophysica Acta (BBA)-General Subjects, 1380(2), 223-31. https://doi.org/10.1016/S0304-4165(97)00145-1
  • Yalaz, S., Matpan Bekler, F., & Acer, O. (2019). Combined effects of some chemicals on –galactosidase activity using a new semiparametric errors in variables model. Banat’s Journal of Biotechnology, 10(19), 42-50. https://doi.org/10.7904/2068-4738-X(19)-42
There are 48 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Şaban Tunç This is me

Fatma Matpan Bekler This is me

Kemal Güven This is me

Project Number FEN.17.008 and FEN.17.009
Publication Date December 15, 2021
Published in Issue Year 2021

Cite

APA Tunç, Ş., Matpan Bekler, F., & Güven, K. (2021). Characterization of intracellular β-galactosidase from Bacillus subtilis 4NK and Bacillus paralicheniformis 5NK isolated from a hot water spring and effects of various inhibitors on enzyme activity. Biotech Studies, 30(2), 71-78. https://doi.org/10.38042/biotechstudies.953514


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services