Research Article
BibTex RIS Cite

Phenotypic and iPBS-retrotransposon Marker Diversity in Okra (Abelmoschus esculentus (L.) Moench) Germplasm

Year 2021, Volume: 30 Issue: 1, 7 - 15, 15.06.2021
https://doi.org/10.38042/biost.2021.30.01.02

Abstract

This study was undertaken to assess genetic and phenotypic diversity of Turkish okra (Abelmoschus esculentus (L.) Moench) germplasm of 26 landraces including three cultivars (Akköy-41, Kabaklı-11, and Marmara-1) with 34 phenotypic traits and 74 iPBS- retrotransposon primers. Leaf-blade size, fruit length, fruit diameter, fruit number per plant, petiole length, plant height, stem diameter, number of stem nodes, and plant growth type (degree of branching) were the most important morphological traits contributing to the variation. Comparison of genotypes with 14 iPBS-retrotransposon primers yielded 141 bands, 34 of which (24.1%) were polymorphic, with the primer 2271 producing the highest (6) bands per primer. Cluster analysis based on phenotypic and molecular markers produced two major groups. Phenotypic based unweighted pair group method with arithmetic mean (UPGMA) dendrogram had 12 sub-groups with the highest similarity (0.63) between GAN-19/GAN-21 and MGL-6/Akköy-41 genotypes. The markers, however, produced a dendrogram with eight subgroups, pairwise genetic similarities ranging from 0.43 to 1.00, where MGL-6 singled out with a similarity value of 0.57. Howbeit, the Mantel test between both dendrograms based on the similarity matrix was insignificant.

References

  • Akash, M.W., Shiyab S.M., & Saleh M.I. (2013). Yield and AFLP analyses of inter-landrace variability in okra (Abelmoschus esculentus L.). Life Science Journal, 10(2), 2771-2779. http://www.dx.doi.org/10.7537/marslsj100213.385
  • Aladele, S.E., Ariyo O.J., & De Lapena, R. (2008). Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. African Journal of Biotechnology, 7(10), 1426-1431. https://doi.org/10.5897/AJB08.006
  • Ali, F., Yılmaz, A., Nadeem, M. A., Habyarimana, E., Subaşı, I., Nawaz, M. A., Chaudhary, H. J., Shahid, M. Q., Ercişli, S., Zia, M., Chung, G., & Baloch, F. S. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using İPBS- retrotransposon markers. PloS One, 14(2), e0211985. https://doi.org/10.1371/journal.pone.0211985
  • Al-Wandawi, H. (1983). Chemical composition of seeds of two okra cultivars. Journal of Agricultural and Food Chemistry, 31(6), 1355-1358. https://doi.org/10.1021/jf00120a051
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using İPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491. https://doi.org/10.3906/tar-2001-10
  • Bhatt, J.P., Patel, N.A., Acharya, R.R., & Kathiria, K.B. (2016). Heterosis for yield and its related traits in Okra (Abelmoschus esculentus L. Moench). Electronic Journal of Plant Breeding, 7(1), 189-196. https://doi.org/10.5958/0975-928X.2016.00026.0
  • Chakravarthi, B.K., & Naravaneni, R. (2006). SSR Marker based DNA Fingerprinting and Diversity study in rice (Oriza sativa. L). African Journal of Biotechnology, 5(9), 684-688. https://doi.org/10.5897/AJB05.172
  • Datta, P.C., & Naug, A. (1968). A few strains of Abelmoschus esculentus (L.) Moench their karyological in relation to phylogeny and organ development. Beiträge zur Biologie der Pflanzen, 45, 113-126.
  • De Candolle, A. (1886). Origin of cultivated plants (2d American ed.). D. Appleton, New York. https://doi.org/10.5962/bhl.title.55127
  • Dhankar, S.K., & Singh, S. (2013). Thermal requirement for flowering and fruit yield attainment in advance lines of okra. Journal of Agrometeorol, 15(1), 39-42.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302. https://doi.org/10.2307/1932409
  • Doyle, J.J., & Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
  • Duzyaman, E., & Vural, H. (2000). Different approaches of the improvement process in some local okra varieties. In II Balkan Symposium on Vegetables and Potatoes, 579, 139-144. 10.17660/ActaHortic.2002.579.20.
  • Düzyaman, E., & Vural, H. (2002). Farklı ekocoğrafik kökenli bamya genotiplerinin morfolojik varyabilitesi üzerinde bir araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 39(2), 17-24.
  • Duzyaman, E., & Vural, H. (2003a). Evaluation of pod characteristics and nutritive value of okra genetic resources. Acta Horticulturae, 598, 103–110. 10.17660/ActaHortic.2003.598.15
  • Duzyaman, E., & Vural, H. (2003b). Managing the variability in okra breeding pro-grams by considering the preferences of the domestic market. Acta Horticulturae, 598, 129–135.
  • Duzyaman, E. (2005). Phenotypic diversity within a collection of distinct okra (Abelmoschus esculentus) cultivars derived from Turkish land races. Genetic Resources and Crop Evolution, 52, 1019-1030. https://doi.org/10.1007/s10722-004-6118-9
  • Duzyaman, E. (2009). Okra in Turkey domestic landraces. In: Okra Handbook Global Production, Processing, and Crop Improvement (Dhankhar B.S. & Singh R., eds.). HNB Publishing, New York, 475, 323-346.
Year 2021, Volume: 30 Issue: 1, 7 - 15, 15.06.2021
https://doi.org/10.38042/biost.2021.30.01.02

Abstract

References

  • Akash, M.W., Shiyab S.M., & Saleh M.I. (2013). Yield and AFLP analyses of inter-landrace variability in okra (Abelmoschus esculentus L.). Life Science Journal, 10(2), 2771-2779. http://www.dx.doi.org/10.7537/marslsj100213.385
  • Aladele, S.E., Ariyo O.J., & De Lapena, R. (2008). Genetic relationships among West African okra (Abelmoschus caillei) and Asian genotypes (Abelmoschus esculentus) using RAPD. African Journal of Biotechnology, 7(10), 1426-1431. https://doi.org/10.5897/AJB08.006
  • Ali, F., Yılmaz, A., Nadeem, M. A., Habyarimana, E., Subaşı, I., Nawaz, M. A., Chaudhary, H. J., Shahid, M. Q., Ercişli, S., Zia, M., Chung, G., & Baloch, F. S. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using İPBS- retrotransposon markers. PloS One, 14(2), e0211985. https://doi.org/10.1371/journal.pone.0211985
  • Al-Wandawi, H. (1983). Chemical composition of seeds of two okra cultivars. Journal of Agricultural and Food Chemistry, 31(6), 1355-1358. https://doi.org/10.1021/jf00120a051
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using İPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491. https://doi.org/10.3906/tar-2001-10
  • Bhatt, J.P., Patel, N.A., Acharya, R.R., & Kathiria, K.B. (2016). Heterosis for yield and its related traits in Okra (Abelmoschus esculentus L. Moench). Electronic Journal of Plant Breeding, 7(1), 189-196. https://doi.org/10.5958/0975-928X.2016.00026.0
  • Chakravarthi, B.K., & Naravaneni, R. (2006). SSR Marker based DNA Fingerprinting and Diversity study in rice (Oriza sativa. L). African Journal of Biotechnology, 5(9), 684-688. https://doi.org/10.5897/AJB05.172
  • Datta, P.C., & Naug, A. (1968). A few strains of Abelmoschus esculentus (L.) Moench their karyological in relation to phylogeny and organ development. Beiträge zur Biologie der Pflanzen, 45, 113-126.
  • De Candolle, A. (1886). Origin of cultivated plants (2d American ed.). D. Appleton, New York. https://doi.org/10.5962/bhl.title.55127
  • Dhankar, S.K., & Singh, S. (2013). Thermal requirement for flowering and fruit yield attainment in advance lines of okra. Journal of Agrometeorol, 15(1), 39-42.
  • Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302. https://doi.org/10.2307/1932409
  • Doyle, J.J., & Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
  • Duzyaman, E., & Vural, H. (2000). Different approaches of the improvement process in some local okra varieties. In II Balkan Symposium on Vegetables and Potatoes, 579, 139-144. 10.17660/ActaHortic.2002.579.20.
  • Düzyaman, E., & Vural, H. (2002). Farklı ekocoğrafik kökenli bamya genotiplerinin morfolojik varyabilitesi üzerinde bir araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 39(2), 17-24.
  • Duzyaman, E., & Vural, H. (2003a). Evaluation of pod characteristics and nutritive value of okra genetic resources. Acta Horticulturae, 598, 103–110. 10.17660/ActaHortic.2003.598.15
  • Duzyaman, E., & Vural, H. (2003b). Managing the variability in okra breeding pro-grams by considering the preferences of the domestic market. Acta Horticulturae, 598, 129–135.
  • Duzyaman, E. (2005). Phenotypic diversity within a collection of distinct okra (Abelmoschus esculentus) cultivars derived from Turkish land races. Genetic Resources and Crop Evolution, 52, 1019-1030. https://doi.org/10.1007/s10722-004-6118-9
  • Duzyaman, E. (2009). Okra in Turkey domestic landraces. In: Okra Handbook Global Production, Processing, and Crop Improvement (Dhankhar B.S. & Singh R., eds.). HNB Publishing, New York, 475, 323-346.
There are 18 citations in total.

Details

Primary Language English
Subjects Genetics
Journal Section Research Articles
Authors

Faik Kantar This is me

Sevde Nur Yemşen This is me

Cansu Bülbül This is me

Neslihan Yılmaz This is me

Nedim Mutlu This is me

Publication Date June 15, 2021
Published in Issue Year 2021 Volume: 30 Issue: 1

Cite

APA Kantar, F., Yemşen, S. N., Bülbül, C., Yılmaz, N., et al. (2021). Phenotypic and iPBS-retrotransposon Marker Diversity in Okra (Abelmoschus esculentus (L.) Moench) Germplasm. Biotech Studies, 30(1), 7-15. https://doi.org/10.38042/biost.2021.30.01.02


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services