Research Article
BibTex RIS Cite

Role of Grafting in Tolerance to Salt Stress in Melon (Cucumis melo L.) Plants: Ion regulation and antioxidant defense systems

Year 2021, Volume: 30 Issue: 1, 22 - 32, 15.06.2021
https://doi.org/10.38042/biotechstudies.932376

Abstract

Grafting in vegetables is a method that has been commonly used in recent years, not just for the treatment of soil borne diseases and pests, but also to facilitate higher abiotic stress tolerance under conditions such as salinity. Herein, it was aimed to determine if the salt tolerance of two salt-susceptible melon genotypes, SCP-1 and SCP-2, could be improved by grafting onto TLR-1 and TLR-2, which are salt-tolerant melon genotypes, and Albatros commercial melon rootstock. The grafted plants were grown in plastic pots containing a peat: perlite mixture and exposed to NaCl at doses of 0 and 200 mM under greenhouse conditions. The salt-tolerant rootstock significantly diminished the damaging effects caused by salt stress via a reduction in the uptake of Na and Cl, which enhanced Ca and K uptake and micronutrition. Stress- induced activities of catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase were considerably higher in the grafted plants. The results showed that grafting salt susceptible plants onto the salt-tolerant rootstock improved the growth regulation. The salt tolerance of the grafted melon seedlings may have partially been the result of the decreased Na and Cl, and malondialdehyde contents and higher antioxidant enzyme activities.

Thanks

Authors gratefully acknowledge United Genetics Turkey Tohum Fide A.Ş. for their collaboration and assistance with the successful accomplishment of this work.

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Al-Juthery, H. W., Al-Swedi, F. G., Al-Taee, R. A., & Al-Taey, D. K. (2019). Grafting of vegetable crops improve diseases control, salt and drought stress tolerance and nutrients, water use efficiency. International Journal of Botany, 4 (3), 108-114.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiology, 14, 1-15. http:// doi.org/10.1104/pp.24.1.1
  • Böhm, V., Fekete, D., Balázs, G., Gáspár, L., & Kappel, N. (2017). Salinity tolerance of grafted watermelon seedlings. Biologia Futura, 68(4), 412-427. https://doi.org/10.1556/018.68.2017.4.7
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1226. https://doi.org/10.1104/pp.98.4.1222
  • Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In: Shanker A. & Venkateswarlu B. (Eds.), Abiotic Stress in Plants–Mechanisms and Adaptations, pp. 21-38. https://doi.org/10.5772/22331
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
  • Dasgan, H. Y., Bayram, M., Kusvuran, S., Coban, A. G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8(24), 31– 37.
  • Edelstein, M., Plaut, Z., & Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1), 177-184. https://doi.org/10.1093/jxb/erq255
  • Fu, Q., Zhang, X., Kong, Q., Bie, Z., & Wang, H. (2018). Grafting onto pumpkin rootstock is an efficient alternative to improve melon tolerance to NaCl stress. European Journal of Horticultural Science, 83(6), 337-344. https://doi.org/10.17660/eJHS.2018/83.6.1
  • Fullana-Pericas, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045
  • Hammad, S. A., & Ali, O. A. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145. https://doi.org/10.1016/j.aoas.2014.06.018
  • He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  • Islam, F., Yasmeen, T., Arif, M. S., Ali, S., Ali, B., Hameed, S., & Zhou, W. (2016). Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant growth regulation, 80(1), 23-36. https://doi.org/10.1007/s10725-015-0142-y
  • Kaushal, M. (2019). Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. International Journal of Molecular Sciences, 20(7), 1769. https://doi.org/10.3390/ijms20071769
  • Kiran, S., Kuşvuran, Ş., Ateş, C., & Ellialtıoğlu, Ş. Ş. (2017). Some physiological properties and analysis of yield parameters of grafted and non-grafted eggplants under waterless conditions. Soil Water Journal, 6(2), 18-25. https://doi.org/10.21657/topraksu.339827
  • Kusvuran, S. (2012). Ion regulation in different organs of melon (Cucumis melo) genotypes under salt stress. International Journal of Agriculture & Biology, 14, 141-144.
  • Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. In: Shanker A.K. and Shanker C (Eds.) Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, London, pp. 481-503. https://doi.org/10.5772/62235
  • Lee, J. M. (1994). Cultivation of grafted vegetables I. current status, grafting methods, and benefits. HortScience, 29(4), 235-239. Maggio, A., Raimondi, G., Martino, A., & De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282. https://doi.org/10.1016/j.envexpbot.2006.02.002
  • Martinez-Vilalta, J., & Garcia-Forner, N. (2016). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846
  • Muries, B., Carvajal, M., Carmen, M., & Martinez-Ballesta, M. C. (2013). Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. Planta, 237(5), 1297-1310. https://doi.org/10.1007/s00425-013-1849-5
  • Niu, M., Huang, Y., Sun, S., Sun, J., Cao, H., Shabala, S., & Bie, Z. (2017). Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany, 69(14), 3465-3476. https://doi.org/10.1093/jxb/erx386
  • Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. https://doi.org/10.1016/j.sajb.2016.11.003
  • Penella, C., Nebauer, S. G., Quinones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. https://doi.org/10.1016/j.plantsci.2014.10.007
  • Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., López-Galarza, S., & Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of plant physiology, 193, 1-11. https://doi.org/10.1016/j.jplph.2016.02.007
  • Penella, C., & Calatayud, A. (2018). Pepper crop under climate change: Grafting as an environmental friendly strategy. In: Rao C. S., Shanker A. K., Shanker, C. (Eds.) Climate Resilient Agriculture: Strategies and Perspectives. IntechOpen, London, pp.129-155. https://doi.org/10.5772/intechopen.72361
  • Santa-Cruz, A., Martinez-Rodríguez, M. M., Perez-Alfocea, F., Romero-Aranda, R., & Bolarin, M. C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162(5), 825-831. https://doi.org/10.1016/S0168-9452(02)00030-4
  • Sarabi, B., Bolandnazar, S., Ghaderi, N., & Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry, 119, 294-311. https://doi.org/10.1016/j.plaphy.2017.09.006
  • Shahverdi, M. A., Omidi, H., & Damalas, C. A. (2020). Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany, 43(1), 55-65. https://doi.org/10.1007/s40415-020-00588-6
  • Shu, S., Gao, P., Li, L., Yuan, Y., Sun, J., & Guo, S. (2016). Abscisic acid-induced H2O2 accumulation enhances antioxidant capacity in pumpkin-grafted cucumber leaves under Ca (NO3)2 stress. Frontiers in Plant Science, 7, 1489. https://doi.org/10.3389/fpls.2016.01489
  • Simpson, C. R., King, S., Nelson, S. D., Jifon, J., Schuster, G., & Volder, A. (2015). Salinity Evaluation for watermelon (Citrullus lanatus) grafted with different rootstocks. Subtropical Agriculture and Environments, 66, 1-6.
  • Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D.P. (2018). Sodium chloride incites Reactive Oxygen Species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489-497. https://doi.org/10.1016/j.biortech.2018.09.065
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & Mcdonald, G. K. (2011). Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal Experimental Botany, 62(6), 2189–2203. https://doi.org/10.1016/j.plantsci.2004.07.032
  • Ulas, A., Aydin, A., Ulas, F., Yetisir, H., & Miano, T. F. (2020). Cucurbita rootstocks ımprove salt tolerance of melon scions by ınducing physiological, biochemical and nutritional responses. Horticulturae, 6(4), 66. https://doi.org/10.3390/horticulturae6040066
  • Ulas F., Ulas A., & Yetisir H. (2019). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European Journal of Sustainable Development, 8(1), 201-210. https://doi.org/10.14207/ejsd.2019.v8n1p201
  • Turkan, I., Bor, M., Özdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168(1), 223-231. https://doi.org/10.1016/j.plantsci.2004.07.032
  • Yang, L., Zhu, Y., Hu, C., Liu, Z., & Zhang, G. (2006). Effects of NaCl stress on the contents of the substances regulating membrane lipid oxidation and osmosis and photosynthetic characteristics of grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica, 26(6), 1195-1200. Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539. https://doi.org/10.1111/nph.14920
  • Yanyan, Y., Shuoshuo, W., Min, W., Biao, G., & Qinghua, S. (2018). Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural Plant Journal, 4(6), 239-249. https://doi.org/10.1016/j.hpj.2018.08.003
  • Zhang, Z., Cao, B., Gao, S., & Xu, K. (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256(4), 1013-1024. https://doi.org/10.1007/s00709-019-01357-3
  • Zhu, J., Bie, Z., Huang, Y., & Han, X. (2008). Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 54(6), 895-902. https://doi.org/10.1111/j.1747-0765.2008.00306.x
Year 2021, Volume: 30 Issue: 1, 22 - 32, 15.06.2021
https://doi.org/10.38042/biotechstudies.932376

Abstract

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Al-Juthery, H. W., Al-Swedi, F. G., Al-Taee, R. A., & Al-Taey, D. K. (2019). Grafting of vegetable crops improve diseases control, salt and drought stress tolerance and nutrients, water use efficiency. International Journal of Botany, 4 (3), 108-114.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiology, 14, 1-15. http:// doi.org/10.1104/pp.24.1.1
  • Böhm, V., Fekete, D., Balázs, G., Gáspár, L., & Kappel, N. (2017). Salinity tolerance of grafted watermelon seedlings. Biologia Futura, 68(4), 412-427. https://doi.org/10.1556/018.68.2017.4.7
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology, 98, 1222-1226. https://doi.org/10.1104/pp.98.4.1222
  • Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In: Shanker A. & Venkateswarlu B. (Eds.), Abiotic Stress in Plants–Mechanisms and Adaptations, pp. 21-38. https://doi.org/10.5772/22331
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155. https://doi.org/10.1016/j.scienta.2010.08.004
  • Dasgan, H. Y., Bayram, M., Kusvuran, S., Coban, A. G., & Akhoundnejad, Y. (2018). Screening of tomatoes for their resistance to salinity and drought stress. Journal of Biology, Agriculture and Healthcare, 8(24), 31– 37.
  • Edelstein, M., Plaut, Z., & Ben-Hur, M. (2011). Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. Journal of Experimental Botany, 62(1), 177-184. https://doi.org/10.1093/jxb/erq255
  • Fu, Q., Zhang, X., Kong, Q., Bie, Z., & Wang, H. (2018). Grafting onto pumpkin rootstock is an efficient alternative to improve melon tolerance to NaCl stress. European Journal of Horticultural Science, 83(6), 337-344. https://doi.org/10.17660/eJHS.2018/83.6.1
  • Fullana-Pericas, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045
  • Hammad, S. A., & Ali, O. A. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145. https://doi.org/10.1016/j.aoas.2014.06.018
  • He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  • Islam, F., Yasmeen, T., Arif, M. S., Ali, S., Ali, B., Hameed, S., & Zhou, W. (2016). Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant growth regulation, 80(1), 23-36. https://doi.org/10.1007/s10725-015-0142-y
  • Kaushal, M. (2019). Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. International Journal of Molecular Sciences, 20(7), 1769. https://doi.org/10.3390/ijms20071769
  • Kiran, S., Kuşvuran, Ş., Ateş, C., & Ellialtıoğlu, Ş. Ş. (2017). Some physiological properties and analysis of yield parameters of grafted and non-grafted eggplants under waterless conditions. Soil Water Journal, 6(2), 18-25. https://doi.org/10.21657/topraksu.339827
  • Kusvuran, S. (2012). Ion regulation in different organs of melon (Cucumis melo) genotypes under salt stress. International Journal of Agriculture & Biology, 14, 141-144.
  • Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. In: Shanker A.K. and Shanker C (Eds.) Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, London, pp. 481-503. https://doi.org/10.5772/62235
  • Lee, J. M. (1994). Cultivation of grafted vegetables I. current status, grafting methods, and benefits. HortScience, 29(4), 235-239. Maggio, A., Raimondi, G., Martino, A., & De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282. https://doi.org/10.1016/j.envexpbot.2006.02.002
  • Martinez-Vilalta, J., & Garcia-Forner, N. (2016). Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell and Environment, 40(6), 962-976. https://doi.org/10.1111/pce.12846
  • Muries, B., Carvajal, M., Carmen, M., & Martinez-Ballesta, M. C. (2013). Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. Planta, 237(5), 1297-1310. https://doi.org/10.1007/s00425-013-1849-5
  • Niu, M., Huang, Y., Sun, S., Sun, J., Cao, H., Shabala, S., & Bie, Z. (2017). Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany, 69(14), 3465-3476. https://doi.org/10.1093/jxb/erx386
  • Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. https://doi.org/10.1016/j.sajb.2016.11.003
  • Penella, C., Nebauer, S. G., Quinones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. https://doi.org/10.1016/j.plantsci.2014.10.007
  • Penella, C., Landi, M., Guidi, L., Nebauer, S. G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., López-Galarza, S., & Calatayud, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of plant physiology, 193, 1-11. https://doi.org/10.1016/j.jplph.2016.02.007
  • Penella, C., & Calatayud, A. (2018). Pepper crop under climate change: Grafting as an environmental friendly strategy. In: Rao C. S., Shanker A. K., Shanker, C. (Eds.) Climate Resilient Agriculture: Strategies and Perspectives. IntechOpen, London, pp.129-155. https://doi.org/10.5772/intechopen.72361
  • Santa-Cruz, A., Martinez-Rodríguez, M. M., Perez-Alfocea, F., Romero-Aranda, R., & Bolarin, M. C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Science, 162(5), 825-831. https://doi.org/10.1016/S0168-9452(02)00030-4
  • Sarabi, B., Bolandnazar, S., Ghaderi, N., & Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry, 119, 294-311. https://doi.org/10.1016/j.plaphy.2017.09.006
  • Shahverdi, M. A., Omidi, H., & Damalas, C. A. (2020). Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany, 43(1), 55-65. https://doi.org/10.1007/s40415-020-00588-6
  • Shu, S., Gao, P., Li, L., Yuan, Y., Sun, J., & Guo, S. (2016). Abscisic acid-induced H2O2 accumulation enhances antioxidant capacity in pumpkin-grafted cucumber leaves under Ca (NO3)2 stress. Frontiers in Plant Science, 7, 1489. https://doi.org/10.3389/fpls.2016.01489
  • Simpson, C. R., King, S., Nelson, S. D., Jifon, J., Schuster, G., & Volder, A. (2015). Salinity Evaluation for watermelon (Citrullus lanatus) grafted with different rootstocks. Subtropical Agriculture and Environments, 66, 1-6.
  • Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D.P. (2018). Sodium chloride incites Reactive Oxygen Species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489-497. https://doi.org/10.1016/j.biortech.2018.09.065
  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & Mcdonald, G. K. (2011). Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal Experimental Botany, 62(6), 2189–2203. https://doi.org/10.1016/j.plantsci.2004.07.032
  • Ulas, A., Aydin, A., Ulas, F., Yetisir, H., & Miano, T. F. (2020). Cucurbita rootstocks ımprove salt tolerance of melon scions by ınducing physiological, biochemical and nutritional responses. Horticulturae, 6(4), 66. https://doi.org/10.3390/horticulturae6040066
  • Ulas F., Ulas A., & Yetisir H. (2019). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European Journal of Sustainable Development, 8(1), 201-210. https://doi.org/10.14207/ejsd.2019.v8n1p201
  • Turkan, I., Bor, M., Özdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168(1), 223-231. https://doi.org/10.1016/j.plantsci.2004.07.032
  • Yang, L., Zhu, Y., Hu, C., Liu, Z., & Zhang, G. (2006). Effects of NaCl stress on the contents of the substances regulating membrane lipid oxidation and osmosis and photosynthetic characteristics of grafted cucumber. Acta Botanica Boreali-Occidentalia Sinica, 26(6), 1195-1200. Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539. https://doi.org/10.1111/nph.14920
  • Yanyan, Y., Shuoshuo, W., Min, W., Biao, G., & Qinghua, S. (2018). Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural Plant Journal, 4(6), 239-249. https://doi.org/10.1016/j.hpj.2018.08.003
  • Zhang, Z., Cao, B., Gao, S., & Xu, K. (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256(4), 1013-1024. https://doi.org/10.1007/s00709-019-01357-3
  • Zhu, J., Bie, Z., Huang, Y., & Han, X. (2008). Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition, 54(6), 895-902. https://doi.org/10.1111/j.1747-0765.2008.00306.x
There are 41 citations in total.

Details

Primary Language English
Subjects Horticultural Production
Journal Section Research Articles
Authors

Şebnem Kuşvuran This is me 0000-0002-1270-6962

Elif Kaya This is me 0000-0001-6189-6611

Ş. Şebnem Ellialtıoğlu This is me 0000-0002-3851-466X

Publication Date June 15, 2021
Published in Issue Year 2021 Volume: 30 Issue: 1

Cite

APA Kuşvuran, Ş., Kaya, E., & Ellialtıoğlu, Ş. Ş. (2021). Role of Grafting in Tolerance to Salt Stress in Melon (Cucumis melo L.) Plants: Ion regulation and antioxidant defense systems. Biotech Studies, 30(1), 22-32. https://doi.org/10.38042/biotechstudies.932376


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services