Analysis of the carbon metabolism of Rhodopseudomonas palustris for biohydrogen production
Year 2022,
Volume: 31 Issue: 1, 1 - 9, 15.06.2022
Ezgi Melis Doğan-güner
Harun Koku
Abstract
Hydrogen can be produced renewably and sustainably by the purple non-sulfur bacterium Rhodopseudomonas palustris from sucrose. To improve hydrogen production, detailed insight is needed, which can be obtained by studying the coupling of carbon fluxes with the light utilization apparatus and the hydrogen producing enzymes. In this study, the flux balance analysis approach was used to construct a model of the central carbon metabolism of this organism and solve the resulting network for a chosen objective function. The model was able to closely reproduce key qualitative and quantitative aspects of an independent experimental study. Further insight was obtained by additional case studies. Specifically, it was found that extreme light intensities resulted in the decrease of hydrogen production, that hydrogen production could be possible even when no light is provided, and a mix of sucrose and an organic acid could improve hydrogen production, which can be explained and supported by prior work on this organism. Further investigation is necessary to investigate the connections between metabolic network components, such the antagonistic relationship between hydrogen and polyhydroxybutyrate, which is a reserve product of this microorganism.
Supporting Institution
The Scientific and Technological Research Council of Turkey
Thanks
We thank the Scientific and Technological Research Council of Turkey (TUBITAK) for the support of this work as part of project 114M436. We deeply appreciate the insightful scientific feedback and commentary by Prof. Dr. Meral Yücel.
References
- Argun, H., Kargi, F., Kapdan, I. K., & Oztekin, R. (2008). Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33(7), 1813-1819. https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.01.038
- Azbar, N., & Levin, D. B. (2012). State of the art and progress in production of biohydrogen. Bentham Science Publishers.
- Azwar, M. Y., Hussain, M. A., & Abdul-Wahab, A. K. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renewable and Sustainable Energy Reviews, 31, 158-173. https://doi.org/https://doi.org/10.1016/j.rser.2013.11.022
- Barbosa, M. J., Rocha, J. M. S., Tramper J., & Wijffels, R. H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol, 85, 25-33. https://doi.org/10.1016/S0168-1656(00)00368-0
- Basak, N., & Das, D. (2007). The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art. World Journal of Microbiology and Biotechnology, 23(1), 31-42. https://doi.org/10.1007/s11274-006-9190-9
- Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver, D. S., Weerasinghe, D., Zhang, P., & Karp, P. D. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res, 44(D1), D471-480. https://doi.org/10.1093/nar/gkv1164
- Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. https://doi.org/https://doi.org/10.1016/S0360-3199(00)00058-6
- Edwards, J. S., & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5528-5533. https://doi.org/10.1073/pnas.97.10.5528
- Eroglu, I., Özgür, E., Eroglu, E., Yücel, M., & Gündüz, U. (2014). Applications of Photofermentative Hydrogen Production. In D. Zannoni & R. De Philippis (Eds.), Microbial BioEnergy: Hydrogen Production (pp. 237-267). Springer Netherlands. https://doi.org/10.1007/978-94-017-8554-9_11
- Feist, A. M., & Palsson, B. O. (2010). The biomass objective function. Current Opinion in Microbiology, 13(3), 344-349. https://doi.org/https://doi.org/10.1016/j.mib.2010.03.003
- Golomysova, A., Gomelsky, M., & Ivanov, P. S. (2010). Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. International Journal of Hydrogen Energy, 35(23), 12751-12760. https://doi.org/https://doi.org/10.1016/j.ijhydene.2010.08.133
- Hallenbeck, P. C., & Liu, Y. (2016). Recent advances in hydrogen production by photosynthetic bacteria. International Journal of Hydrogen Energy, 41(7), 4446-4454. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.11.090
- Imam, S., Yilmaz, S., Sohmen, U., Gorzalski, A. S., Reed, J. L., Noguera, D. R., & Donohue, T. J. (2011). iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 5(1), 116. https://doi.org/10.1186/1752-0509-5-116
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2015). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457-D462. https://doi.org/10.1093/nar/gkv1070
- Keskin, T., & Hallenbeck, P. C. (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology, 112, 131-136. https://doi.org/https://doi.org/10.1016/j.biortech.2012.02.077
- Klamt, S., Schuster, S., & D., G. E. (2002). Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng, 77(7), 734-751. https://doi.org/10.1002/bit.10153
- Koku, H., Eroglu, I., Gunduz, U., Yücel, M., & Turker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27, 1315-1329. https://doi.org/10.1016/S0360-3199(02)00127-1
- Kotay, S., & Das, D. (2008). Biohydrogen as a renewable energy resource—Prospects and potentials. International Journal of Hydrogen Energy, 33, 258-263. https://doi.org/10.1016/j.ijhydene.2007.07.031
- Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Miriam, L. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres y Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., & Harwood, C. S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1), 55-61. https://doi.org/10.1038/nbt923
- McEwan, A. G. (1994). Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek, 66(1-3), 151-164. https://doi.org/10.1007/bf00871637
- McKinlay, J. B., & Harwood, C. S. (2010). Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences, 107(26), 11669-11675. https://doi.org/10.1073/pnas.1006175107
- McKinlay, J. B. (2014). Systems Biology of Photobiological Hydrogen Production by Purple Non-sulfur Bacteria. In D. Zannoni & R. De Philippis (Eds.), Microbial BioEnergy: Hydrogen Production (pp. 155-176). https://doi.org/10.1007/978-94-017-8554-9_7
- Miyake, J., Wakayama, T., Schnackenberg, J., Arai, T., & Asada, Y. (1999). Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. Journal of Bioscience and Bioengineering, 88(6), 659-663. https://doi.org/https://doi.org/10.1016/S1389-1723(00)87096-6
- Navid, A., Jiao, Y., Wong, S. E., & Pett-Ridge, J. (2019). System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. BMC bioinformatics, 20(1), 1-16.
- Oh, Y. K., Raj, S. M., Jung Gyoo, Y., & Park, S. (2011). Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology, 102(18), 8357-8367. https://doi.org/https://doi.org/10.1016/j.biortech.2011.04.054
- Oh, Y. K., Seol, E. H., Lee, E. Y., & Park, S. (2002). Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 27(11-12), 1373-1379.
- Ozturk, Y., Yücel, M., Daldal, F., Mandacı, S., Gündüz, U., Türker, L., & Eroğlu, İ. (2006). Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. International Journal of Hydrogen Energy, 31(11), 1545-1552. https://doi.org/https://doi.org/10.1016/j.ijhydene.2006.06.042
- Sagir, E., Ozgur, E., Gunduz, U., Eroglu, I., & Yucel, M. (2017). Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Bioprocess Biosyst Eng, 40(11), 1589-1601. https://doi.org/10.1007/s00449-017-1815-x
- Sasikala, C. H., Ramana, C. H. V., & Rao, P. R. (1995). Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 20(2), 123-126. https://doi.org/https://doi.org/10.1016/0360-3199(94)E0009-N
- Schomburg, I., Chang, A., Placzek, S., Söhngen, C., Rother, M., Lang, M., Munaretto, C., Ulas, S., Stelzer, M., Grote, A., Scheer, M., & Schomburg, D. (2013). BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic acids research, 41(Database issue), D764-D772. https://doi.org/10.1093/nar/gks1049
- Sparling, R., Carere, C., Rydzak, T., Schellenberg, J., & Levin, D. B. (2012). Thermodynamic and biochemical aspect of hydrogen production by dark fermentation. In N. Azbar & D. B. Levin (Eds.), State of the Art and Progress in Production of Biohydrogen (pp. 160-188). https://doi.org/10.2174/978160805224011201010160
- Stephanopoulos, G. N., Aristidou, A. A., & Nielsen, J. (1998). CHAPTER 8 - Metabolic Flux Analysis. 309-351. https://doi.org/https://doi.org/10.1016/B978-012666260-3/50009-1
- Uffen R. L., & Wolfe R. S. (1970). Anaerobic growth of purple nonsulfur bacteria under dark conditions. Journal of Bacteriology, 104(1), 462-472. https://doi.org/10.1128/jb.104.1.462-472.1970
- Uyar, B., Eroglu, I., Yücel, M., & Gündüz, U. (2009). Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. International Journal of Hydrogen Energy, 34(10), 4517-4523. https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.07.057
- Varma, A., & Palsson, B. O. (1993). Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns. Journal of Theoretical Biology, 165(4), 503-522. https://doi.org/https://doi.org/10.1006/jtbi.1993.1203
- Varma, A., & Palsson, B. O. (1994). Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/Technology, 12(10), 994-998. https://doi.org/10.1038/nbt1094-994
- Venkataraman, P. (2009). Applied Optimization with MATLAB Programming. Wiley Publishing.
- Vignais, P. M., Colbeau, A., Willison, J. C., & Jouanneau, Y. (1985). Hydrogenase, Nitrogenase, and Hydrogen Metabolism in the Photosynthetic Bacteria. Advances in Microbial Physiology, 26, 155-234. https://doi.org/https://doi.org/10.1016/S0065-2911(08)60397-5
- Waligórska, M., Seifert, K., Górecki, K., Moritz, M., & Laniecki, M. (2009). Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH ions. J Appl Microbiol, 107(4), 1308-1318. https://doi.org/10.1111/j.1365-2672.2009.04314.x
- Zhang, D., Xiao, N., Mahbubani, K. T., del Rio-Chanona, E. A., Slater, N. K. H., & Vassiliadis, V. S. (2015). Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: Model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chemical Engineering Science, 130, 68-78. https://doi.org/https://doi.org/10.1016/j.ces.2015.02.045
Year 2022,
Volume: 31 Issue: 1, 1 - 9, 15.06.2022
Ezgi Melis Doğan-güner
Harun Koku
References
- Argun, H., Kargi, F., Kapdan, I. K., & Oztekin, R. (2008). Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy, 33(7), 1813-1819. https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.01.038
- Azbar, N., & Levin, D. B. (2012). State of the art and progress in production of biohydrogen. Bentham Science Publishers.
- Azwar, M. Y., Hussain, M. A., & Abdul-Wahab, A. K. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review. Renewable and Sustainable Energy Reviews, 31, 158-173. https://doi.org/https://doi.org/10.1016/j.rser.2013.11.022
- Barbosa, M. J., Rocha, J. M. S., Tramper J., & Wijffels, R. H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol, 85, 25-33. https://doi.org/10.1016/S0168-1656(00)00368-0
- Basak, N., & Das, D. (2007). The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art. World Journal of Microbiology and Biotechnology, 23(1), 31-42. https://doi.org/10.1007/s11274-006-9190-9
- Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver, D. S., Weerasinghe, D., Zhang, P., & Karp, P. D. (2016). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res, 44(D1), D471-480. https://doi.org/10.1093/nar/gkv1164
- Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. https://doi.org/https://doi.org/10.1016/S0360-3199(00)00058-6
- Edwards, J. S., & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5528-5533. https://doi.org/10.1073/pnas.97.10.5528
- Eroglu, I., Özgür, E., Eroglu, E., Yücel, M., & Gündüz, U. (2014). Applications of Photofermentative Hydrogen Production. In D. Zannoni & R. De Philippis (Eds.), Microbial BioEnergy: Hydrogen Production (pp. 237-267). Springer Netherlands. https://doi.org/10.1007/978-94-017-8554-9_11
- Feist, A. M., & Palsson, B. O. (2010). The biomass objective function. Current Opinion in Microbiology, 13(3), 344-349. https://doi.org/https://doi.org/10.1016/j.mib.2010.03.003
- Golomysova, A., Gomelsky, M., & Ivanov, P. S. (2010). Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. International Journal of Hydrogen Energy, 35(23), 12751-12760. https://doi.org/https://doi.org/10.1016/j.ijhydene.2010.08.133
- Hallenbeck, P. C., & Liu, Y. (2016). Recent advances in hydrogen production by photosynthetic bacteria. International Journal of Hydrogen Energy, 41(7), 4446-4454. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.11.090
- Imam, S., Yilmaz, S., Sohmen, U., Gorzalski, A. S., Reed, J. L., Noguera, D. R., & Donohue, T. J. (2011). iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 5(1), 116. https://doi.org/10.1186/1752-0509-5-116
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2015). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457-D462. https://doi.org/10.1093/nar/gkv1070
- Keskin, T., & Hallenbeck, P. C. (2012). Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresource Technology, 112, 131-136. https://doi.org/https://doi.org/10.1016/j.biortech.2012.02.077
- Klamt, S., Schuster, S., & D., G. E. (2002). Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng, 77(7), 734-751. https://doi.org/10.1002/bit.10153
- Koku, H., Eroglu, I., Gunduz, U., Yücel, M., & Turker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27, 1315-1329. https://doi.org/10.1016/S0360-3199(02)00127-1
- Kotay, S., & Das, D. (2008). Biohydrogen as a renewable energy resource—Prospects and potentials. International Journal of Hydrogen Energy, 33, 258-263. https://doi.org/10.1016/j.ijhydene.2007.07.031
- Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Miriam, L. L., Pelletier, D. A., Beatty, J. T., Lang, A. S., Tabita, F. R., Gibson, J. L., Hanson, T. E., Bobst, C., Torres y Torres, J. L., Peres, C., Harrison, F. H., Gibson, J., & Harwood, C. S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1), 55-61. https://doi.org/10.1038/nbt923
- McEwan, A. G. (1994). Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek, 66(1-3), 151-164. https://doi.org/10.1007/bf00871637
- McKinlay, J. B., & Harwood, C. S. (2010). Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences, 107(26), 11669-11675. https://doi.org/10.1073/pnas.1006175107
- McKinlay, J. B. (2014). Systems Biology of Photobiological Hydrogen Production by Purple Non-sulfur Bacteria. In D. Zannoni & R. De Philippis (Eds.), Microbial BioEnergy: Hydrogen Production (pp. 155-176). https://doi.org/10.1007/978-94-017-8554-9_7
- Miyake, J., Wakayama, T., Schnackenberg, J., Arai, T., & Asada, Y. (1999). Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. Journal of Bioscience and Bioengineering, 88(6), 659-663. https://doi.org/https://doi.org/10.1016/S1389-1723(00)87096-6
- Navid, A., Jiao, Y., Wong, S. E., & Pett-Ridge, J. (2019). System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. BMC bioinformatics, 20(1), 1-16.
- Oh, Y. K., Raj, S. M., Jung Gyoo, Y., & Park, S. (2011). Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology, 102(18), 8357-8367. https://doi.org/https://doi.org/10.1016/j.biortech.2011.04.054
- Oh, Y. K., Seol, E. H., Lee, E. Y., & Park, S. (2002). Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 27(11-12), 1373-1379.
- Ozturk, Y., Yücel, M., Daldal, F., Mandacı, S., Gündüz, U., Türker, L., & Eroğlu, İ. (2006). Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. International Journal of Hydrogen Energy, 31(11), 1545-1552. https://doi.org/https://doi.org/10.1016/j.ijhydene.2006.06.042
- Sagir, E., Ozgur, E., Gunduz, U., Eroglu, I., & Yucel, M. (2017). Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria. Bioprocess Biosyst Eng, 40(11), 1589-1601. https://doi.org/10.1007/s00449-017-1815-x
- Sasikala, C. H., Ramana, C. H. V., & Rao, P. R. (1995). Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 20(2), 123-126. https://doi.org/https://doi.org/10.1016/0360-3199(94)E0009-N
- Schomburg, I., Chang, A., Placzek, S., Söhngen, C., Rother, M., Lang, M., Munaretto, C., Ulas, S., Stelzer, M., Grote, A., Scheer, M., & Schomburg, D. (2013). BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic acids research, 41(Database issue), D764-D772. https://doi.org/10.1093/nar/gks1049
- Sparling, R., Carere, C., Rydzak, T., Schellenberg, J., & Levin, D. B. (2012). Thermodynamic and biochemical aspect of hydrogen production by dark fermentation. In N. Azbar & D. B. Levin (Eds.), State of the Art and Progress in Production of Biohydrogen (pp. 160-188). https://doi.org/10.2174/978160805224011201010160
- Stephanopoulos, G. N., Aristidou, A. A., & Nielsen, J. (1998). CHAPTER 8 - Metabolic Flux Analysis. 309-351. https://doi.org/https://doi.org/10.1016/B978-012666260-3/50009-1
- Uffen R. L., & Wolfe R. S. (1970). Anaerobic growth of purple nonsulfur bacteria under dark conditions. Journal of Bacteriology, 104(1), 462-472. https://doi.org/10.1128/jb.104.1.462-472.1970
- Uyar, B., Eroglu, I., Yücel, M., & Gündüz, U. (2009). Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. International Journal of Hydrogen Energy, 34(10), 4517-4523. https://doi.org/https://doi.org/10.1016/j.ijhydene.2008.07.057
- Varma, A., & Palsson, B. O. (1993). Metabolic Capabilities of Escherichia coli II. Optimal Growth Patterns. Journal of Theoretical Biology, 165(4), 503-522. https://doi.org/https://doi.org/10.1006/jtbi.1993.1203
- Varma, A., & Palsson, B. O. (1994). Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use. Bio/Technology, 12(10), 994-998. https://doi.org/10.1038/nbt1094-994
- Venkataraman, P. (2009). Applied Optimization with MATLAB Programming. Wiley Publishing.
- Vignais, P. M., Colbeau, A., Willison, J. C., & Jouanneau, Y. (1985). Hydrogenase, Nitrogenase, and Hydrogen Metabolism in the Photosynthetic Bacteria. Advances in Microbial Physiology, 26, 155-234. https://doi.org/https://doi.org/10.1016/S0065-2911(08)60397-5
- Waligórska, M., Seifert, K., Górecki, K., Moritz, M., & Laniecki, M. (2009). Kinetic model of hydrogen generation by Rhodobacter sphaeroides in the presence of NH ions. J Appl Microbiol, 107(4), 1308-1318. https://doi.org/10.1111/j.1365-2672.2009.04314.x
- Zhang, D., Xiao, N., Mahbubani, K. T., del Rio-Chanona, E. A., Slater, N. K. H., & Vassiliadis, V. S. (2015). Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: Model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chemical Engineering Science, 130, 68-78. https://doi.org/https://doi.org/10.1016/j.ces.2015.02.045