Research Article
BibTex RIS Cite

Expression of immune-related gene from African mud catfish Clarias gariepinus reared in bioflocs systems after Aeromonas hydrophilia infection

Year 2022, Volume: 31 Issue: 1, 17 - 27, 15.06.2022
https://doi.org/10.38042/biotechstudies.1073521

Abstract

The influence of various carbon sources as bioflocs on relative immunological gene expression, haematology, growth, and microbial community in Clarias gariepinus juvenile culture is investigated in this study. The bioflocs groups (four) were created by daily supplementation with four carbon sources (cassava peel, tapioca, wheat offal, and brewery waste) with a carbon-nitrogen ratio of 20 and the control without carbon addition. The juvenile Clarias gariepinus (8.16 ± 0.2 g) was stocked into each bioflocs system and reared for 72 days. The results revealed that the water quality parameter and survival rate differed significantly across the treatments. The microbial community revealed that there were differences in bacterial intensity and diversity among the various culture systems. The haematological parameters between the treatments showed a significant difference p<0.05 in the challenged test. qRT-PCR was used to assess immune-related gene expression, and four immune genes (IL-10, TNF-α, TGF-β, IL-1β) were shown to be increased. As a result, the bioflocs system can be considered to boost innate immunity and immune-related gene expression. Overall, this research found that using bioflocs technology can help with immunostimulation, and that the effect is independent of the organic carbon utilised to keep the fish alive.

References

  • Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide, Journal of Economic Entomology, 18, 265–267.
  • Adebayo, O. O., & Daramola, A. O. (2013). Economic analysis of catfish (Clarias gariepius) production in Ibadan metropolis. Discourse Journal of Agriculture and food sciences, 1(7), 128 - 134.
  • Ahmad, I., Verma, A. K., Rani, A. M. B., Rathore, G., Saharan, N. & Gora, A. H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61–67. https://doi: 10.1016/j.aquaculture.2016.02.011.
  • Amend, D. F. (1981). Potency testing of fish vaccines. Fish biologics: serodiagnostics and vaccines, 447-454.
  • APHA (1998). Standard method for the examination of water and wastewater. 20th edition, American Public Health Association, American Waters Works Association and Water Environmental Federation, Washington DC.
  • Avnimelech, Y. (1999). Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X.
  • Ayazo-Genes, J., Pertúz-Buelvas, V., Jiménez-Velásquez, C., Espinosa-Araujo, J., Atencio-García, V., & Prieto-Guevara, M. (2019). Describing the planktonic and bacterial communities associated with bocachico Prochilodus magdalenae fish culture with biofloc technology. Revista MVZ Córdoba, 24(2), 7209-7217. https://doi.org/10.21897/rmvz.1648.
  • Azim, M. E. & Little, D. C., (2008). The Biofloc Technology (BFT) in indoor tanks: Water quality, biofloc composition and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036.
  • Ballester, E., Abreu, P., Cavalli, R., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero-exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. http://dx.doi.org/10.1111/j.1365-2095.2009.00648.x.
  • Chinabut, S., & Puttinaowarat, S. (2005). The choice of disease control strategies to secure international market access for aquaculture products. Developments in Biologicals, 121, 255–261.
  • Crab, R., (2010). Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture. PhD thesis, Ghent University. 178 pp.
  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W., (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, 1–14. http://dx.doi.org/10.1016/j.aquaculture.2007.05.006
  • Crab, R., Lambert, A., Defoirdt, T., Bossier, P., & Verstraete, W., (2010). Bioflocs protect gnotobiotic brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109, 1643–1649. https://doi.org/10.1111/j.1365-2672.2010.04791.x
  • Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
  • Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunology, 41, 332–339. https://doi.org /10.1016/j.fsi.2014.09.004.
  • Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now – cultivation and utilization (ed. by M.D. Matovic). InTech, Queen’s University, Belfast, pp 301–328
  • Food and Agriculture Organization (FAO) (2016). Cultured Aquatic Species Information Programme Penaeus Monodon (Fabricius, 1798). Presence of giant tiger shrimp Penaeus monodon Fabricius, 1798 on the Mexican coast of the Gulf of Mexico. Available from: https://www.researchgate.net/publication/259390783 Presence of giant tiger shrimp Penaeus monodon Fabricius 1798 on the Mexican coast of the Gulf of Mexico [accessed Oct 19 2021].
  • Gorgoglione, B., Wang, T., Secombes, C. J., & Holland, J. W. (2013). Immune gene expression profiling of proliferative kidney disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Veterinary Research, 44(1), 1-16. https://doi.org /10.1186/1297-9716-44-55.
  • Gou, C., Wang, J., Wang, Y., Dong, W., Shan, X., Lou, Y., & Gao, Y. (2018). Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunology, 72, 604-610. https://doi.org/ 10.1016/j.fsi.2017.11.027.
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquaculture Engineering, 34, 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009.
  • Holland, J. W., Gould, C. R., Jones, C. S., Noble, L. R., & Secombes, C. J. (2003). The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during a natural outbreak of proliferative kidney disease (PKD). Parasitology, 126, S95e102. https://doi.org/10.1017/S0031182003003767.
  • Ita, E. O. (1980). The review of recent advances in warm water aquaculture research and proposed experimental design for maximizing fish production in Nigerian fish pond. Lake kainji research institute, 1-59.
  • Janda, J. M., & Abbott, S. L. (2010). The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clinical Microbiology Reviews, 23(1), 35–73. https://doi.org/10.1128/cmr.00039-09.
  • Joseph, S. W., & Carnahan, A. (1994). The isolation, identification, and systematics of the motile Aeromonas species. Annual Review of Fish Diseases. 4, 315–343. https://doi.org/10.1016/0959-8030(94)90033-7.
  • Karunasagar, I., Rosalind, G. M., & Karunasagar, I. (1991). Immunological response of the Indian major carps to Aeromonas hydrophila vaccine. Journal of Fish Diseases, 14, 413–417. https://doi.org/10.1111/j.1365-2761.1991.tb00841.x.
  • Kheirelseid, E. A, Chang, K. H., Newell, J., Kerin, M. J., & Miller, N. (2010). Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer. BMC Molecular Biology, 11(1), 1-13. https://doi.org/10.1186/1471-2199-11-12.
  • Kusdarwati, R., Kurniawan, H., & Prayogi, Y. T. (2017, February). Isolation and identification of Aeromonas hydrophila and Saprolegnia sp. on catfish (Clarias gariepinus) in floating cages in Bozem Moro Krembangan Surabaya. In IOP Conference Series: Earth and Environmental Science, 55(1), 012038. IOP Publishing.
  • Lindenstrøm, T., Secombes, C. J., & Buchmann K. (2004). Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vetenary Immunology & Immunopathology, 97(3-4), 137-48. https://doi:10.1016/j.vetimm.2003.08.016.
  • Liu, Q. N., Xin, Z. Z., Zhang, D. Z., Jiang, S. H., Chai, X. Y., Li, C. F., Zhou, C. L., & Tang, B. P. (2016). Molecular identification and expression analysis of a goose-type lysozyme (LysG) gene in yellow catfish Pelteobagrus fulvidraco. Fish and Shellfish Immunology, 58, 423–428. https://doi.org/10.1016/j.fsi.2016.09.034.
  • Loureiro, K., Wilson, W., & Abreu, P. (2012). Use of protozoa, rotifers and nematodes as live feed for shrimp cultured in the BFT system. Atlântica Rio Grande, 34(1), 5-12.
  • McIntosh, D., Samocha, T. M., Jones, E. R., Lawrence, A. L., McKee, D. A., Horowitz, S., & Horowitz, A. (2000). The effect of a bacterial supplement on the high-density culturing of Litopenaeus vannamei with low protein diet in outdoor tank system and no water exchange. Aquacultural Engineering, 21, 215–227. https://doi.org/10.1016/S0144-8609(99)00030-8.
  • Milstein, A., Avnimelech, Y., Zoran, M., & Joseph, D. (2001). Growth performance of hybrid bass and hybrid tilapia in conventional and active suspension intensive ponds. Isreali Journal of Aquaculture- Bamidgeh, 53, 147–157. http://hdl.handle.net/10524/19037.
  • Monroy, D., Castro, B., Fernández, P., & Mayorga, R. (2010). Inhibition of Aeromonas hydrophila by probiotic strains isolated from the digestive tract of Pterophyllum scalare. Revista Mexicana Ingenieria Química, 9(1), 37-42.
  • Monroy-Dosta, M., De Lara-Andrade, R., Castro-Mejia, J., Castro-Mejia, G., Coelho-Emerenciano, M. (2013). Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biología marina y oceanografía, 48(3), 511-520. http://dx.doi.org/10.4067/S0718-19572013000300009
  • Moore, K. W., de Waal Malefyt, R., Coffman, R. I., O’Garra, A. (2001). Interleukin 10 and interleukin 10 receptor. Annual Review of Immunology, 19, 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  • Moriarty, D. J. W. (1997). The role of microorganisms in aquaculture ponds. Aquaculture, 151, 333–349. https://doi.org/10.1016/S0044-8486(96)01487-1.
  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.
  • Applied and Environmental Microbiology, 59(3), 695-700. https://doi.org/10.1128/aem.59.3.695-700.1993 Plaza-Diaz, J., Gomez-Llorente, C., Fontana, L., & Gil, A. (2014). Modulation of immunity and inflammatory gene expression in the gut, inflammatory diseases of the gut and in the liver byprobiotics. World Journal of Gastroenterology, 20(42), 15632–15649. https://dx.doi.org/10.3748%2Fwjg.v20.i42.15632.
  • Pridgeon, J. W., Klesius, P. H., Dominowski, P. J., Yancey, R. J., & Kievit, M. S. (2013). Chicken-type lysozyme in channel catfish: Expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. Fish & Shellfish Immunology, 35(3), 680-688. https://doi.org/10.1016/j.fsi.2013.05.018.
  • Purcell, M. K., Kurath, G., Garver, K. A., Herwig, R. P. & Winton, J. R. (2004). Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunology, 17, 447- 462. https://doi: 10.1016/j.fsi.2004.04.017.
  • Ray, A. J., Seaborn, G., Leffler, J. W., Wilde, S.B., Lawson, A., & Browdy, C. L. (2010). Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310, 130–138. https://doi.org/10.1016/j.aquaculture.2010.10.019.
  • Reddy, K. R., & Patrick, J. W. H. (1975). Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94. https://doi.org/10.1016/0038-0717(75)90004-8.
  • Rendueles, O., Ferri`eres, L., & Fr´etaud, M. (2012). A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacterial. PLoS Pathogens, 8(7), e1002815. https://doi.org/10.1371/journal.ppat.1002815.
  • Saavedra, M. J., Guedes-Novais, S., Alves, A., Rema, P., Tacao, M., Correia, A., & Martinez-Murcia, A., (2004). Resistance to Β-Lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). International Microbiology, 7, 201–211.
  • Sabur, M. A. (2006). Studies on the ecology of the pathogenic bacteria Aeromonas hydrophila in indigenous and exotic carps under polyculture condition. A Ph. D. Dissertation. Department of Aquaculture, Bangladesh Agricultural University, Mymensingh Bangladesh, 136.
  • Svobodova, Z., Pravda, D., & Palackova, J. (1991). Unified methods of haematological examination of fish. Research Institute of fish culture and hydrobiology.
  • Swain, B., Samanta, M., Basu, M., Panda, P., Sahoo, B. R., & Maiti, N. K. (2011). Molecular characterization, inductive expression and mechanism of interleukin 10 gene induction in indian major carp Catla catla. Aquaculture Research, 43, 897–907, https://doi.org/10.1111/j.1365-2109.2011.02904.x. Ture, M., Ozcelep, T., Akbulut, B., & Kutlu, I. (2018). Disease of Russian sturgeon (Acipenser gueldenstaedtii) caused by Aeromonas sp. Genetics of Aquatic Organisms, 2(2), 43-47. https://doi.org/10.4194/2459-1831-v2_2_03 Wang, M., Zhao, X., Kong, X., Wang, L., Jiao, D., & Zhang, H. (2016). Molecular characterization and expressing analysis of the c-type and g-type lysozymes in Qihecrucian carp Carassius auratus. Fish and Shellfish Immunology, 52, 210–220. https://doi.org/10.1016/j.aqrep.2019.100198.
  • Wang, R., Feng, J., Li, C., Liu, S., Zhang, Y., & Liu, Z. (2013). Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. Fish Shellfish and Immunology, 35, 136–145. https://doi.org/10.1016/j.fsi.2013.04.014.
  • Xiao, Y., Yu, L., Gui, G., Gong, Y., Wen, X., Xia, W., Yang, H., & Zhang, L. (2019). Molecular cloning and expression analysis of interleukin-8 and -10 in yellow catfish and in response to bacterial pathogen infection. Biomed Research International, 6, 1-9 http://dx.doi.org/10.1155/2019/9617659.
  • Xie, B., & Yu, K. J. (2007). Shrimp farming in China: operating characteristics, environmental impact and perspectives. Ocean and Coastal Management, 50, 538–550. http://dx.doi.org/10.1016/j.ocecoaman.2007.02.006.
  • Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117–124. https://doi.org/10.1016/j.aquaculture.2013.07.017.
  • Yarahmadi, P., Miandare, H. K., Fayaz, S., & Caipang, C. M. A. (2016). Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout Oncorhynchus mykiss. Fish and Shellfish Immunology, 48, 43–53. https://doi.org/10.1016/j.fsi.2015.11.007.
  • Zhang, S., Xu, Q., Boscari, E., Du, H., Qi, Z., Li, Y., Huang, J., Di, J., Yue, H., Li, C., Congiu L, & Wei, Q. (2018). Characterization and expression analysis of g- and ctype lysozymes in Dabry’s sturgeon Acipenser dabryanus. Fish and Shellfish Immunology, 76, 260–265. https://doi.org/10.1016/j.fsi.2018.03.006.
  • Zmyslowska, I., Korzekwa, K., & Szarek, J. (2009). Aeromonas hydrophila in fish aquaculture. Journal of Comparative Pathology, 141, 313. http://dx.doi.org/10.1016/j.jcpa.2009.08.142.
Year 2022, Volume: 31 Issue: 1, 17 - 27, 15.06.2022
https://doi.org/10.38042/biotechstudies.1073521

Abstract

References

  • Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide, Journal of Economic Entomology, 18, 265–267.
  • Adebayo, O. O., & Daramola, A. O. (2013). Economic analysis of catfish (Clarias gariepius) production in Ibadan metropolis. Discourse Journal of Agriculture and food sciences, 1(7), 128 - 134.
  • Ahmad, I., Verma, A. K., Rani, A. M. B., Rathore, G., Saharan, N. & Gora, A. H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61–67. https://doi: 10.1016/j.aquaculture.2016.02.011.
  • Amend, D. F. (1981). Potency testing of fish vaccines. Fish biologics: serodiagnostics and vaccines, 447-454.
  • APHA (1998). Standard method for the examination of water and wastewater. 20th edition, American Public Health Association, American Waters Works Association and Water Environmental Federation, Washington DC.
  • Avnimelech, Y. (1999). Carbon and nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176, 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X.
  • Ayazo-Genes, J., Pertúz-Buelvas, V., Jiménez-Velásquez, C., Espinosa-Araujo, J., Atencio-García, V., & Prieto-Guevara, M. (2019). Describing the planktonic and bacterial communities associated with bocachico Prochilodus magdalenae fish culture with biofloc technology. Revista MVZ Córdoba, 24(2), 7209-7217. https://doi.org/10.21897/rmvz.1648.
  • Azim, M. E. & Little, D. C., (2008). The Biofloc Technology (BFT) in indoor tanks: Water quality, biofloc composition and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283, 29-35. https://doi.org/10.1016/j.aquaculture.2008.06.036.
  • Ballester, E., Abreu, P., Cavalli, R., Emerenciano, M., Abreu, L., & Wasielesky, W. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero-exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16, 163-172. http://dx.doi.org/10.1111/j.1365-2095.2009.00648.x.
  • Chinabut, S., & Puttinaowarat, S. (2005). The choice of disease control strategies to secure international market access for aquaculture products. Developments in Biologicals, 121, 255–261.
  • Crab, R., (2010). Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture. PhD thesis, Ghent University. 178 pp.
  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W., (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270, 1–14. http://dx.doi.org/10.1016/j.aquaculture.2007.05.006
  • Crab, R., Lambert, A., Defoirdt, T., Bossier, P., & Verstraete, W., (2010). Bioflocs protect gnotobiotic brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. Journal of Applied Microbiology, 109, 1643–1649. https://doi.org/10.1111/j.1365-2672.2010.04791.x
  • Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
  • Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunology, 41, 332–339. https://doi.org /10.1016/j.fsi.2014.09.004.
  • Emerenciano, M., Gaxiola, G., & Cuzon, G. (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now – cultivation and utilization (ed. by M.D. Matovic). InTech, Queen’s University, Belfast, pp 301–328
  • Food and Agriculture Organization (FAO) (2016). Cultured Aquatic Species Information Programme Penaeus Monodon (Fabricius, 1798). Presence of giant tiger shrimp Penaeus monodon Fabricius, 1798 on the Mexican coast of the Gulf of Mexico. Available from: https://www.researchgate.net/publication/259390783 Presence of giant tiger shrimp Penaeus monodon Fabricius 1798 on the Mexican coast of the Gulf of Mexico [accessed Oct 19 2021].
  • Gorgoglione, B., Wang, T., Secombes, C. J., & Holland, J. W. (2013). Immune gene expression profiling of proliferative kidney disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Veterinary Research, 44(1), 1-16. https://doi.org /10.1186/1297-9716-44-55.
  • Gou, C., Wang, J., Wang, Y., Dong, W., Shan, X., Lou, Y., & Gao, Y. (2018). Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunology, 72, 604-610. https://doi.org/ 10.1016/j.fsi.2017.11.027.
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquaculture Engineering, 34, 344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009.
  • Holland, J. W., Gould, C. R., Jones, C. S., Noble, L. R., & Secombes, C. J. (2003). The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during a natural outbreak of proliferative kidney disease (PKD). Parasitology, 126, S95e102. https://doi.org/10.1017/S0031182003003767.
  • Ita, E. O. (1980). The review of recent advances in warm water aquaculture research and proposed experimental design for maximizing fish production in Nigerian fish pond. Lake kainji research institute, 1-59.
  • Janda, J. M., & Abbott, S. L. (2010). The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clinical Microbiology Reviews, 23(1), 35–73. https://doi.org/10.1128/cmr.00039-09.
  • Joseph, S. W., & Carnahan, A. (1994). The isolation, identification, and systematics of the motile Aeromonas species. Annual Review of Fish Diseases. 4, 315–343. https://doi.org/10.1016/0959-8030(94)90033-7.
  • Karunasagar, I., Rosalind, G. M., & Karunasagar, I. (1991). Immunological response of the Indian major carps to Aeromonas hydrophila vaccine. Journal of Fish Diseases, 14, 413–417. https://doi.org/10.1111/j.1365-2761.1991.tb00841.x.
  • Kheirelseid, E. A, Chang, K. H., Newell, J., Kerin, M. J., & Miller, N. (2010). Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer. BMC Molecular Biology, 11(1), 1-13. https://doi.org/10.1186/1471-2199-11-12.
  • Kusdarwati, R., Kurniawan, H., & Prayogi, Y. T. (2017, February). Isolation and identification of Aeromonas hydrophila and Saprolegnia sp. on catfish (Clarias gariepinus) in floating cages in Bozem Moro Krembangan Surabaya. In IOP Conference Series: Earth and Environmental Science, 55(1), 012038. IOP Publishing.
  • Lindenstrøm, T., Secombes, C. J., & Buchmann K. (2004). Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vetenary Immunology & Immunopathology, 97(3-4), 137-48. https://doi:10.1016/j.vetimm.2003.08.016.
  • Liu, Q. N., Xin, Z. Z., Zhang, D. Z., Jiang, S. H., Chai, X. Y., Li, C. F., Zhou, C. L., & Tang, B. P. (2016). Molecular identification and expression analysis of a goose-type lysozyme (LysG) gene in yellow catfish Pelteobagrus fulvidraco. Fish and Shellfish Immunology, 58, 423–428. https://doi.org/10.1016/j.fsi.2016.09.034.
  • Loureiro, K., Wilson, W., & Abreu, P. (2012). Use of protozoa, rotifers and nematodes as live feed for shrimp cultured in the BFT system. Atlântica Rio Grande, 34(1), 5-12.
  • McIntosh, D., Samocha, T. M., Jones, E. R., Lawrence, A. L., McKee, D. A., Horowitz, S., & Horowitz, A. (2000). The effect of a bacterial supplement on the high-density culturing of Litopenaeus vannamei with low protein diet in outdoor tank system and no water exchange. Aquacultural Engineering, 21, 215–227. https://doi.org/10.1016/S0144-8609(99)00030-8.
  • Milstein, A., Avnimelech, Y., Zoran, M., & Joseph, D. (2001). Growth performance of hybrid bass and hybrid tilapia in conventional and active suspension intensive ponds. Isreali Journal of Aquaculture- Bamidgeh, 53, 147–157. http://hdl.handle.net/10524/19037.
  • Monroy, D., Castro, B., Fernández, P., & Mayorga, R. (2010). Inhibition of Aeromonas hydrophila by probiotic strains isolated from the digestive tract of Pterophyllum scalare. Revista Mexicana Ingenieria Química, 9(1), 37-42.
  • Monroy-Dosta, M., De Lara-Andrade, R., Castro-Mejia, J., Castro-Mejia, G., Coelho-Emerenciano, M. (2013). Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Revista de biología marina y oceanografía, 48(3), 511-520. http://dx.doi.org/10.4067/S0718-19572013000300009
  • Moore, K. W., de Waal Malefyt, R., Coffman, R. I., O’Garra, A. (2001). Interleukin 10 and interleukin 10 receptor. Annual Review of Immunology, 19, 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  • Moriarty, D. J. W. (1997). The role of microorganisms in aquaculture ponds. Aquaculture, 151, 333–349. https://doi.org/10.1016/S0044-8486(96)01487-1.
  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.
  • Applied and Environmental Microbiology, 59(3), 695-700. https://doi.org/10.1128/aem.59.3.695-700.1993 Plaza-Diaz, J., Gomez-Llorente, C., Fontana, L., & Gil, A. (2014). Modulation of immunity and inflammatory gene expression in the gut, inflammatory diseases of the gut and in the liver byprobiotics. World Journal of Gastroenterology, 20(42), 15632–15649. https://dx.doi.org/10.3748%2Fwjg.v20.i42.15632.
  • Pridgeon, J. W., Klesius, P. H., Dominowski, P. J., Yancey, R. J., & Kievit, M. S. (2013). Chicken-type lysozyme in channel catfish: Expression analysis, lysozyme activity, and efficacy as immunostimulant against Aeromonas hydrophila infection. Fish & Shellfish Immunology, 35(3), 680-688. https://doi.org/10.1016/j.fsi.2013.05.018.
  • Purcell, M. K., Kurath, G., Garver, K. A., Herwig, R. P. & Winton, J. R. (2004). Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunology, 17, 447- 462. https://doi: 10.1016/j.fsi.2004.04.017.
  • Ray, A. J., Seaborn, G., Leffler, J. W., Wilde, S.B., Lawson, A., & Browdy, C. L. (2010). Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310, 130–138. https://doi.org/10.1016/j.aquaculture.2010.10.019.
  • Reddy, K. R., & Patrick, J. W. H. (1975). Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7, 87-94. https://doi.org/10.1016/0038-0717(75)90004-8.
  • Rendueles, O., Ferri`eres, L., & Fr´etaud, M. (2012). A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacterial. PLoS Pathogens, 8(7), e1002815. https://doi.org/10.1371/journal.ppat.1002815.
  • Saavedra, M. J., Guedes-Novais, S., Alves, A., Rema, P., Tacao, M., Correia, A., & Martinez-Murcia, A., (2004). Resistance to Β-Lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). International Microbiology, 7, 201–211.
  • Sabur, M. A. (2006). Studies on the ecology of the pathogenic bacteria Aeromonas hydrophila in indigenous and exotic carps under polyculture condition. A Ph. D. Dissertation. Department of Aquaculture, Bangladesh Agricultural University, Mymensingh Bangladesh, 136.
  • Svobodova, Z., Pravda, D., & Palackova, J. (1991). Unified methods of haematological examination of fish. Research Institute of fish culture and hydrobiology.
  • Swain, B., Samanta, M., Basu, M., Panda, P., Sahoo, B. R., & Maiti, N. K. (2011). Molecular characterization, inductive expression and mechanism of interleukin 10 gene induction in indian major carp Catla catla. Aquaculture Research, 43, 897–907, https://doi.org/10.1111/j.1365-2109.2011.02904.x. Ture, M., Ozcelep, T., Akbulut, B., & Kutlu, I. (2018). Disease of Russian sturgeon (Acipenser gueldenstaedtii) caused by Aeromonas sp. Genetics of Aquatic Organisms, 2(2), 43-47. https://doi.org/10.4194/2459-1831-v2_2_03 Wang, M., Zhao, X., Kong, X., Wang, L., Jiao, D., & Zhang, H. (2016). Molecular characterization and expressing analysis of the c-type and g-type lysozymes in Qihecrucian carp Carassius auratus. Fish and Shellfish Immunology, 52, 210–220. https://doi.org/10.1016/j.aqrep.2019.100198.
  • Wang, R., Feng, J., Li, C., Liu, S., Zhang, Y., & Liu, Z. (2013). Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. Fish Shellfish and Immunology, 35, 136–145. https://doi.org/10.1016/j.fsi.2013.04.014.
  • Xiao, Y., Yu, L., Gui, G., Gong, Y., Wen, X., Xia, W., Yang, H., & Zhang, L. (2019). Molecular cloning and expression analysis of interleukin-8 and -10 in yellow catfish and in response to bacterial pathogen infection. Biomed Research International, 6, 1-9 http://dx.doi.org/10.1155/2019/9617659.
  • Xie, B., & Yu, K. J. (2007). Shrimp farming in China: operating characteristics, environmental impact and perspectives. Ocean and Coastal Management, 50, 538–550. http://dx.doi.org/10.1016/j.ocecoaman.2007.02.006.
  • Xu, W. J., & Pan, L. Q. (2013). Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412, 117–124. https://doi.org/10.1016/j.aquaculture.2013.07.017.
  • Yarahmadi, P., Miandare, H. K., Fayaz, S., & Caipang, C. M. A. (2016). Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout Oncorhynchus mykiss. Fish and Shellfish Immunology, 48, 43–53. https://doi.org/10.1016/j.fsi.2015.11.007.
  • Zhang, S., Xu, Q., Boscari, E., Du, H., Qi, Z., Li, Y., Huang, J., Di, J., Yue, H., Li, C., Congiu L, & Wei, Q. (2018). Characterization and expression analysis of g- and ctype lysozymes in Dabry’s sturgeon Acipenser dabryanus. Fish and Shellfish Immunology, 76, 260–265. https://doi.org/10.1016/j.fsi.2018.03.006.
  • Zmyslowska, I., Korzekwa, K., & Szarek, J. (2009). Aeromonas hydrophila in fish aquaculture. Journal of Comparative Pathology, 141, 313. http://dx.doi.org/10.1016/j.jcpa.2009.08.142.
There are 54 citations in total.

Details

Primary Language English
Subjects Genetics
Journal Section Research Articles
Authors

Omoniyi Michael Popoola This is me

Ayomide Miracle Oyelade This is me

Success Taiwo Torhukerıjho This is me

Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 31 Issue: 1

Cite

APA Popoola, O. M., Oyelade, A. M., & Torhukerıjho, S. T. (2022). Expression of immune-related gene from African mud catfish Clarias gariepinus reared in bioflocs systems after Aeromonas hydrophilia infection. Biotech Studies, 31(1), 17-27. https://doi.org/10.38042/biotechstudies.1073521


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services