Year 2025,
Volume: 34 Issue: SI, 1 - 16
Ayşegül İnam
,
Nihal Özel
,
Zülal Günay
,
Murat Elibol
References
- Al-Snafi, A. E. (2015). Chemical constituents and pharmacological importance of Agropyron repens–A review. Research Journal of Pharmacology and Toxicology, 1(2), 37-41.
- Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233. https://doi.org/10.1016/j.apjtb.2016.12.014
- Bhakya, S., Muthukrishnan, S., Sukumaran, M., & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience, 6, 755-766.
https://doi.org/10.1007/s13204-015-0473-z
- Biemer, J. J. (1973). Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals of Clinical & Laboratory Science, 3(2), 135-140.
- Bortolami, M., Di Matteo, P., Rocco, D., Feroci, M., & Petrucci, R. (2022). Metabolic profile of Agropyron repens (L.) P. Beauv. rhizome herbal tea by HPLC-PDA-ESI-MS/MS analysis. Molecules, 27(15), 49-62. https://doi.org/10.3390/molecules27154962
- Carmona, E. R., Benito, N., Plaza, T., & Recio-Sánchez, G. (2017). Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chemistry Letters and Reviews, 10(4), 250-256. https://doi.org/10.1080/17518253.2017.1360400
- Deivanathan, S. K., & Prakash, J. T. J. (2022). Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda speciosa and its antimicrobial and anti-oxidative properties. Chemical Data Collections, 38, 100-831. https://doi.org/10.1016/j.cdc.2022.100831
- Deveci, E., Cayan, G. T., Karakurt, S., & Duru, M. E. (2020). Antioxidant, cytotoxic, and enzyme inhibitory activities of Agropyron repens and Crataegus monogyna species. European Journal of Biology, 79(2), 98-105. https://doi.org/10.26650/EurJBiol.2020.0077
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
- Dutta, D., & Das, B. M. (2021). Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: A review on synthesis and applications of green nanoparticles. Environmental Nanotechnology, Monitoring & Management, 15, 100418. https://doi.org/10.1016/j.enmm.2020.100418
- El-Rafie, H. M., El-Rafie, M., & Zahran, M. K. (2013). Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate polymers, 96(2), 403-410. https://doi.org/10.1016/j.carbpol.2013.03.071
- EUCAST. (2020). Breakpoint tables for interpretation of MICs for antifungal agents. European Committee on Antimicrobial Susceptibility Testing. https://www.eucast.org/
- Fawcett, D., Verduin, J. J., Shah, M., Sharma, S. B., & Poinern, G. E. J. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2017(1), 1-15. https://doi.org/10.1155/2017/8013850
- Hano, C., & Abbasi, B. H. (2021). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31. http://doi.org/10.3390/biom12010031
- Hawar, S. N., Al-Shmgani, H. S., Al-Kubaisi, Z. A., Sulaiman, G. M., Dewir, Y. H., & Rikisahedew, J. J. (2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials, 2022(1), 1-8. https://doi.org/10.1155/2022/1058119
- Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology, 15(1), 1-23.
- Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656. https://doi.org/10.1016/j.mimet.2019.105656
- Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., Bellinghieri, V., La Barbera, T. M., Güvenç, A., & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of agricultural and food chemistry, 57(15), 6570-6577. https://doi.org/10.1021/jf9012295
- Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
- Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2018). Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications. Elsevier Inc.
https://doi.org/10.1016/B978-0-12-814130-4.00011-7
- Ramakrishna, M., Rajesh Babu, D., Gengan, R. M., Chandra, S., & Nageswara Rao, G. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6, 1-13. http://doi.org/10.1007/s40097-015-0173-y
- Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. http://doi.org/10.1039/C8RA08982E
- Saeb, A. T., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. (2014). Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. The scientific world journal, 2014(1), 704-708. https://doi.org/10.1155/2014/704708
- Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005. https://doi.org/10.3390/nano11041005
- Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
- Sathishkumar, R. S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180-1191.
https://doi.org/10.1016/j.jscs.2019.07.008
- Seyrekoğlu, F., & Temiz, H. (2020). Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology, 8(1), 226-229. https://doi.org/10.24925/turjaf.v8i1.226-229.3013
- Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915. https://doi.org/10.1039/d1na00509j
- Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food chemistry, 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038.
Silver nanoparticles produced from Agropyron repens: A green synthesis approach and antimicrobial analysis
Year 2025,
Volume: 34 Issue: SI, 1 - 16
Ayşegül İnam
,
Nihal Özel
,
Zülal Günay
,
Murat Elibol
Abstract
The plant Agropyron repens is invasively distributed both in natural grassland areas and in agricultural areas. It contains valuable metabolites such as carbohydrates, phenolic compounds, flavonoids, saponins, essential oils, and minerals. A. repens plant extract has the potential as an alternative source for nanoparticle synthesis. The total phenolic and carbohydrate contents of the aqueous extract were analyzed using spectrophotometric methods. Silver nanoparticles (AgNPs) were synthesized at room temperature using the aqueous extract of A. repens without any chemical stabilizer or reducing agent. The formation of AgNPs was confirmed by the observed color change. UV-Vis spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectroscopy, and X-ray diffraction were used for characterization. An absorption was obtained in the UV-Vis spectrum. In DLS measurements, the size of AgNPs was determined to be approximately 75 nm. The obtained AgNPs and fabrics treated with these nanoparticles showed antibacterial activity against both gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. AgNPs and fabric samples exhibited antifungal activity against Candida albicans. In addition, the antioxidant activities of aqueous extracts and AgNPs were evaluated. This study highlights that A. repens can be used in the production of AgNPs by green synthesis methods.
Thanks
Nihal Ozel and Zulal Gunay thanks to 2211-C TUBITAK National Scholarship Program for PhD Students.
References
- Al-Snafi, A. E. (2015). Chemical constituents and pharmacological importance of Agropyron repens–A review. Research Journal of Pharmacology and Toxicology, 1(2), 37-41.
- Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233. https://doi.org/10.1016/j.apjtb.2016.12.014
- Bhakya, S., Muthukrishnan, S., Sukumaran, M., & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience, 6, 755-766.
https://doi.org/10.1007/s13204-015-0473-z
- Biemer, J. J. (1973). Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Annals of Clinical & Laboratory Science, 3(2), 135-140.
- Bortolami, M., Di Matteo, P., Rocco, D., Feroci, M., & Petrucci, R. (2022). Metabolic profile of Agropyron repens (L.) P. Beauv. rhizome herbal tea by HPLC-PDA-ESI-MS/MS analysis. Molecules, 27(15), 49-62. https://doi.org/10.3390/molecules27154962
- Carmona, E. R., Benito, N., Plaza, T., & Recio-Sánchez, G. (2017). Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chemistry Letters and Reviews, 10(4), 250-256. https://doi.org/10.1080/17518253.2017.1360400
- Deivanathan, S. K., & Prakash, J. T. J. (2022). Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda speciosa and its antimicrobial and anti-oxidative properties. Chemical Data Collections, 38, 100-831. https://doi.org/10.1016/j.cdc.2022.100831
- Deveci, E., Cayan, G. T., Karakurt, S., & Duru, M. E. (2020). Antioxidant, cytotoxic, and enzyme inhibitory activities of Agropyron repens and Crataegus monogyna species. European Journal of Biology, 79(2), 98-105. https://doi.org/10.26650/EurJBiol.2020.0077
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
- Dutta, D., & Das, B. M. (2021). Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: A review on synthesis and applications of green nanoparticles. Environmental Nanotechnology, Monitoring & Management, 15, 100418. https://doi.org/10.1016/j.enmm.2020.100418
- El-Rafie, H. M., El-Rafie, M., & Zahran, M. K. (2013). Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate polymers, 96(2), 403-410. https://doi.org/10.1016/j.carbpol.2013.03.071
- EUCAST. (2020). Breakpoint tables for interpretation of MICs for antifungal agents. European Committee on Antimicrobial Susceptibility Testing. https://www.eucast.org/
- Fawcett, D., Verduin, J. J., Shah, M., Sharma, S. B., & Poinern, G. E. J. (2017). A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2017(1), 1-15. https://doi.org/10.1155/2017/8013850
- Hano, C., & Abbasi, B. H. (2021). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31. http://doi.org/10.3390/biom12010031
- Hawar, S. N., Al-Shmgani, H. S., Al-Kubaisi, Z. A., Sulaiman, G. M., Dewir, Y. H., & Rikisahedew, J. J. (2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials, 2022(1), 1-8. https://doi.org/10.1155/2022/1058119
- Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology, 15(1), 1-23.
- Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656. https://doi.org/10.1016/j.mimet.2019.105656
- Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., Bellinghieri, V., La Barbera, T. M., Güvenç, A., & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of agricultural and food chemistry, 57(15), 6570-6577. https://doi.org/10.1021/jf9012295
- Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances, 31(2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
- Mudalige, T., Qu, H., Van Haute, D., Ansar, S. M., Paredes, A., & Ingle, T. (2018). Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications. Elsevier Inc.
https://doi.org/10.1016/B978-0-12-814130-4.00011-7
- Ramakrishna, M., Rajesh Babu, D., Gengan, R. M., Chandra, S., & Nageswara Rao, G. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6, 1-13. http://doi.org/10.1007/s40097-015-0173-y
- Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances, 9(5), 2673-2702. http://doi.org/10.1039/C8RA08982E
- Saeb, A. T., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. (2014). Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. The scientific world journal, 2014(1), 704-708. https://doi.org/10.1155/2014/704708
- Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005. https://doi.org/10.3390/nano11041005
- Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
- Sathishkumar, R. S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180-1191.
https://doi.org/10.1016/j.jscs.2019.07.008
- Seyrekoğlu, F., & Temiz, H. (2020). Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology, 8(1), 226-229. https://doi.org/10.24925/turjaf.v8i1.226-229.3013
- Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915. https://doi.org/10.1039/d1na00509j
- Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food chemistry, 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038.