Monitoring 2,4-D removal by filamentous fungi using electrochemical methods
Year 2025,
Volume: 34 Issue: SI, 58 - 65, 21.08.2025
Ulkuye Dudu Gul
,
Hulya Silah
Abstract
Pesticides that spread into the environment from residues not only cause environmental pollution but also have negative effects on living organisms. Studies in recent years have focused on removing pesticides from aquatic environments. This study investigated the biological treatment of 2,4-D (2,4-Dichlorophenoxy Acetic Acid), one of the pesticides widely used in Turkey, by Aspergillus versicolor and Rhizopus arrhizus. The 2,4-D is used as a herbicide, and its water solubility allows it to pass from soil to water and spread easily. Our research aims to monitor 2,4-D removal from aqueous environments with different fungal species using electrochemical methods. Molasses was used as a carbon source to reduce the cost of the medium used for fungal growth. The bioremoval and biosorption mechanisms were examined for 2,4-D removal. The maximum 2,4-D bioremoval rates by R. arrhizus and A. versicolor species growing on molasses medium were 78.58% and 85.78%, respectively. Also, R. arrhizus and A. versicolor achieved 62.7% and 78.1% biosorption of 2,4-D at optimal conditions (pH 2 and 15 mg/L 2,4-D concentration), respectively. This study showed that filamentous fungi can be used in the bioremediation of pesticide-contaminated environments with a cheap and environmentally friendly approach.
Project Number
2012-02.B İL.12-01.
Thanks
We would like to thank TÜBİTAK for providing financial support to this study with project number 113Y590 and Bilecik Şeyh Edebali University Scientific Research Projects Coordination Office for providing financial support with project number 2012-02.B İL.12-01.
References
-
Ahmad Md. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, Md., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), e29128, https://doi.org/10.1016/j.heliyon.2024.e29128.
-
Aksu, Z., Karabayır, G. (2008). Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology, 99, 7730–7741.
https://doi.org/10.1016/j.biortech.2008.01.056.
-
Bazrafshan, E., Kord Mostafapour, F., Faridi, H., Farzadkia, M., Sargazi, S., Sohrabi, A. (2013). Removal of 2,4-Dichlorophenoxyacetic Acid (2,4-D) From Aqueous Environments Using Single-Walled Carbon Nanotubes. Health Scope, 2(1), 39-46. https://doi.org/10.17795/jhealthscope-7710.
-
Bhatt, P., Zhang, W., Lin, Z., Pang, S., Huang, Y., Chen, S. (2020). Biodegradation of Allethrin by a Novel Fungus Fusarium proliferatum Strain CF2, Isolated from Contaminated Soils. Microorganisms. 8(4). 593. https://doi.org/10.3390/microorganisms8040593.
-
Boivin, A., Amellal, S., Schiavon, M., van Genuchten, M. Th. (2005). 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environmental Pollution, 138 (1), 92-99. https://doi.org/10.1016/j.envpol.2005.02.016.
-
Boonupara, T., Udomkun, P., Khan, E., Kajitvichyanukul, P. (2023). Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. Toxics, 11(10), 858. https://doi: 10.3390/toxics11100858
-
Coccia, M., Bontempi, E. (2023). New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environmental Research, 229, 115938.
-
Cyco ´n, M., Zmijowska, A., Piotrowska-Seget, Z. (2011). Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. ˙ Open Life Sciences, 6, 188–198.
https://doi.org/10.1016/j.envres.2023.115938.
-
Dehghani, M., Nasseri, S., Karamimanesh, M. (2014). Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon. Journal of Environmental Health Science and Engineering, 12(28), 1- 10. https://doi.org/10.1186/2052-336x-12-28.
-
Dönmez, G. (2002). Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme Microbial. Technol., 30, 363–366.
https://doi.org/10.1016/S0141-0229(01)00511-7.
-
Gupta, V.K., Gupta, A., Rastogic, A., Agarwala, S., Nayaka, A. (2011). Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res. 45(13), 4047–4055.
https://doi.org/10.1016/j.watres.2011.05.016.
-
Gül, Ü.D., Silah H. (2023). Pesticide Removal by Filamentous Fungi Using Electrochemical Techniques. Environmental Engineering & Management Journal (EEMJ), 22( 3), 497.
https://doi.org/10.30638/eemj.2023.039.
-
Gül, Ü.D., Şenol, Z. M., Taştan, B. E. (2022). Treatment of the Allura Red food colorant contaminated water by a novel cyanobacterium Desertifilum tharense. Water Sci Technol, 85 (1), 279–290.
https://doi.org/10.2166/wst.2021.615.
-
Hayashi, S., Tanaka, S., Takao, S., Kobayashi, S., Suyama, K., Itoh, K. (2021). Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes and Environments, 36(3), ME21016. https://doi.org/10.1264/jsme2.ME21016.
-
Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2015). Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes. Polymers, 7(4), 747-759. https://doi.org/10.3390/polym7040747.
-
Itoh, K., Kanda, R., Momoda, Y. (2000). Presence of 2,4-dcatabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in alpha-Proteobacteria. Microbes and Environments, 15, 113–117. https://doi.org/10.1264/jsme2.2000.113
-
Jazini Zadeh R., Sayadi MH., Rezaei MR. (2020). Removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions by modified magnetic nanoparticles with amino functional groups. Journal of Water and Environmental Nanotechnology, 5(2),147-156. https://doi.org/10.22090/jwent.2020.02.005.
-
Kaur, R., Choudhary, D., Bali, S., Bandral, S. S., Singh, V., Ahmad, A., Rani, N., Singh, T. G., Chandrasekaran, B. (2024) Pesticides: An alarming detrimental to health and environment, Science of The Total Environment, 915, 170113, https://doi.org/10.1016/j.scitotenv.2024.170113.
-
Kim, Y.-E., Jeon, D., Lee, H., Huh, Y., Lee, S., Kim, J. G., & Kim, H. S. (2023). Revealing the Extent of Pesticide Runoff to the Surface Water in Agricultural Watersheds. Water, 15(22), 3984.
https://doi.org/10.3390/w15223984.
-
Legorreta-Castañeda, A.J., Lucho-Constantino, C.A., Beltrán-Hernández, R.I., Coronel-Olivares, C., Vázquez-Rodríguez, G.A. (2020). Biosorption of Water Pollutants by Fungal Pellets. Water, 12(4),1155.
https://doi.org/10.3390/w12041155.
-
Long, R. Q., Yang, R. T. (2001). Carbon nanotubes as superior sorbent for dioxin removal. J Am. Chem. Soc., 123(9), 2058-2059. https://doi.org/10.1021/ja003830l.
-
Lousada, M.E., Maldonado, E.A.L., Nthunya, L.N., Mosai, A., Pereira Antunes, M. L., Fraceto, L. F., Baigorria, E. (2023). Nanoclays and mineral derivates applied to pesticide water remediation, Journal of Contaminant Hydrology, 259, 104264. https://doi.org/10.1016/j.jconhyd.2023.104264.
-
Mendes, B. S., & Leitão, A. L. M. D. (2009). Fungal diversity and environmental herbicides remediation. In NA (pp. 1-9)
-
Ministry of Agriculture and Forestry, 2023: https://cevreselgostergeler.csb.gov.tr/tarim-ilaci-pestisit-kullanimi-i-85834#_ednref1
-
Mishra, R. K., Mentha, S.S., Misra, Y., Dwivedi, N. (2023). Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus, 6, 74-95.
-
https://doi.org/10.1016/j.wen.2023.08.002.Mitra, S., Saran, R. K., Srivastava, S., Rensing, C. (2024). Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. Science of The Total Environment, 935, 173026, https://doi.org/10.1016/j.scitotenv.2024.173026.
-
Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., Cunill, JM. (2022). Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol. 13, 962619. https://doi.org/10.3389/fmicb.2022.962619
-
Rasool, S., Rasool, T., Gani, K.M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301.
-
Ruomeng, B., Meihao, O., Siru, Z., Shichen, G., Yixian, Z., Junhong, C., Ruijie, M., Yuan, L., Gezhi, X., Xingyu, C., Shiyi, Z., Aihui, Z., Baishan, F. (2023). Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synthetic and Systems Biotechnology, 8 (2), 302-313. https://doi.org/10.1016/j.synbio.2023.03.005.
-
Sadettin, S., Dönmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium(VI) by using thermophil Phormidium sp. Enzyme Microbial. Technol., 41, 175–180.
https://doi.org/10.1016/j.enzmictec.2006.12.015.
-
Sarhan A.T. (2020). The Effective Role of Soil Indigenous Fungi on 2,4-D Herbicide Degradation. Biogenesis, 8 (2), 195-202. https://doi.org/10.24252/bio.v8i2.16802.
-
Sezer K., Aksu Z. (2013). Şeker pancarı küspesinden elde edilen aktif karbonun atık sulardaki 2,4-D ve Metribuzin pestisitlerinin adsorpsiyonunda kullanılabilirliğinin araştırılması. Bitki Koruma Bülteni, 53(1), 57-64.
-
Swathy, K., Vivekanandhan, P., Yuvaraj, A., Sarayut, P., Kim, J. S., Krutmuang, P. (2024). Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon, 10(1), e23406. https://doi.org/10.1016/j.heliyon.2023.e23406.
-
Tudi, M. D., Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D.T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health., 18(3), 1112. https://doi.org/10.3390/ijerph18031112
-
Tortella, G. R., Diez, M. C., Duran, N. (2005). Fungal Diversity and Use in Decomposition of Environmental Pollutants. Critical Reviews in Microbiology, 31(4), 197-212.
https://doi.org/10.1080/10408410500304066.
Year 2025,
Volume: 34 Issue: SI, 58 - 65, 21.08.2025
Ulkuye Dudu Gul
,
Hulya Silah
Project Number
2012-02.B İL.12-01.
References
-
Ahmad Md. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, Md., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), e29128, https://doi.org/10.1016/j.heliyon.2024.e29128.
-
Aksu, Z., Karabayır, G. (2008). Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology, 99, 7730–7741.
https://doi.org/10.1016/j.biortech.2008.01.056.
-
Bazrafshan, E., Kord Mostafapour, F., Faridi, H., Farzadkia, M., Sargazi, S., Sohrabi, A. (2013). Removal of 2,4-Dichlorophenoxyacetic Acid (2,4-D) From Aqueous Environments Using Single-Walled Carbon Nanotubes. Health Scope, 2(1), 39-46. https://doi.org/10.17795/jhealthscope-7710.
-
Bhatt, P., Zhang, W., Lin, Z., Pang, S., Huang, Y., Chen, S. (2020). Biodegradation of Allethrin by a Novel Fungus Fusarium proliferatum Strain CF2, Isolated from Contaminated Soils. Microorganisms. 8(4). 593. https://doi.org/10.3390/microorganisms8040593.
-
Boivin, A., Amellal, S., Schiavon, M., van Genuchten, M. Th. (2005). 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environmental Pollution, 138 (1), 92-99. https://doi.org/10.1016/j.envpol.2005.02.016.
-
Boonupara, T., Udomkun, P., Khan, E., Kajitvichyanukul, P. (2023). Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. Toxics, 11(10), 858. https://doi: 10.3390/toxics11100858
-
Coccia, M., Bontempi, E. (2023). New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment. Environmental Research, 229, 115938.
-
Cyco ´n, M., Zmijowska, A., Piotrowska-Seget, Z. (2011). Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. ˙ Open Life Sciences, 6, 188–198.
https://doi.org/10.1016/j.envres.2023.115938.
-
Dehghani, M., Nasseri, S., Karamimanesh, M. (2014). Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon. Journal of Environmental Health Science and Engineering, 12(28), 1- 10. https://doi.org/10.1186/2052-336x-12-28.
-
Dönmez, G. (2002). Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium. Enzyme Microbial. Technol., 30, 363–366.
https://doi.org/10.1016/S0141-0229(01)00511-7.
-
Gupta, V.K., Gupta, A., Rastogic, A., Agarwala, S., Nayaka, A. (2011). Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res. 45(13), 4047–4055.
https://doi.org/10.1016/j.watres.2011.05.016.
-
Gül, Ü.D., Silah H. (2023). Pesticide Removal by Filamentous Fungi Using Electrochemical Techniques. Environmental Engineering & Management Journal (EEMJ), 22( 3), 497.
https://doi.org/10.30638/eemj.2023.039.
-
Gül, Ü.D., Şenol, Z. M., Taştan, B. E. (2022). Treatment of the Allura Red food colorant contaminated water by a novel cyanobacterium Desertifilum tharense. Water Sci Technol, 85 (1), 279–290.
https://doi.org/10.2166/wst.2021.615.
-
Hayashi, S., Tanaka, S., Takao, S., Kobayashi, S., Suyama, K., Itoh, K. (2021). Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes and Environments, 36(3), ME21016. https://doi.org/10.1264/jsme2.ME21016.
-
Ibrahim, S., Ahmad, A., & Mohamed, N. S. (2015). Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes. Polymers, 7(4), 747-759. https://doi.org/10.3390/polym7040747.
-
Itoh, K., Kanda, R., Momoda, Y. (2000). Presence of 2,4-dcatabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in alpha-Proteobacteria. Microbes and Environments, 15, 113–117. https://doi.org/10.1264/jsme2.2000.113
-
Jazini Zadeh R., Sayadi MH., Rezaei MR. (2020). Removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions by modified magnetic nanoparticles with amino functional groups. Journal of Water and Environmental Nanotechnology, 5(2),147-156. https://doi.org/10.22090/jwent.2020.02.005.
-
Kaur, R., Choudhary, D., Bali, S., Bandral, S. S., Singh, V., Ahmad, A., Rani, N., Singh, T. G., Chandrasekaran, B. (2024) Pesticides: An alarming detrimental to health and environment, Science of The Total Environment, 915, 170113, https://doi.org/10.1016/j.scitotenv.2024.170113.
-
Kim, Y.-E., Jeon, D., Lee, H., Huh, Y., Lee, S., Kim, J. G., & Kim, H. S. (2023). Revealing the Extent of Pesticide Runoff to the Surface Water in Agricultural Watersheds. Water, 15(22), 3984.
https://doi.org/10.3390/w15223984.
-
Legorreta-Castañeda, A.J., Lucho-Constantino, C.A., Beltrán-Hernández, R.I., Coronel-Olivares, C., Vázquez-Rodríguez, G.A. (2020). Biosorption of Water Pollutants by Fungal Pellets. Water, 12(4),1155.
https://doi.org/10.3390/w12041155.
-
Long, R. Q., Yang, R. T. (2001). Carbon nanotubes as superior sorbent for dioxin removal. J Am. Chem. Soc., 123(9), 2058-2059. https://doi.org/10.1021/ja003830l.
-
Lousada, M.E., Maldonado, E.A.L., Nthunya, L.N., Mosai, A., Pereira Antunes, M. L., Fraceto, L. F., Baigorria, E. (2023). Nanoclays and mineral derivates applied to pesticide water remediation, Journal of Contaminant Hydrology, 259, 104264. https://doi.org/10.1016/j.jconhyd.2023.104264.
-
Mendes, B. S., & Leitão, A. L. M. D. (2009). Fungal diversity and environmental herbicides remediation. In NA (pp. 1-9)
-
Ministry of Agriculture and Forestry, 2023: https://cevreselgostergeler.csb.gov.tr/tarim-ilaci-pestisit-kullanimi-i-85834#_ednref1
-
Mishra, R. K., Mentha, S.S., Misra, Y., Dwivedi, N. (2023). Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus, 6, 74-95.
-
https://doi.org/10.1016/j.wen.2023.08.002.Mitra, S., Saran, R. K., Srivastava, S., Rensing, C. (2024). Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. Science of The Total Environment, 935, 173026, https://doi.org/10.1016/j.scitotenv.2024.173026.
-
Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., Cunill, JM. (2022). Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol. 13, 962619. https://doi.org/10.3389/fmicb.2022.962619
-
Rasool, S., Rasool, T., Gani, K.M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/10.1016/j.ceja.2022.100301.
-
Ruomeng, B., Meihao, O., Siru, Z., Shichen, G., Yixian, Z., Junhong, C., Ruijie, M., Yuan, L., Gezhi, X., Xingyu, C., Shiyi, Z., Aihui, Z., Baishan, F. (2023). Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synthetic and Systems Biotechnology, 8 (2), 302-313. https://doi.org/10.1016/j.synbio.2023.03.005.
-
Sadettin, S., Dönmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium(VI) by using thermophil Phormidium sp. Enzyme Microbial. Technol., 41, 175–180.
https://doi.org/10.1016/j.enzmictec.2006.12.015.
-
Sarhan A.T. (2020). The Effective Role of Soil Indigenous Fungi on 2,4-D Herbicide Degradation. Biogenesis, 8 (2), 195-202. https://doi.org/10.24252/bio.v8i2.16802.
-
Sezer K., Aksu Z. (2013). Şeker pancarı küspesinden elde edilen aktif karbonun atık sulardaki 2,4-D ve Metribuzin pestisitlerinin adsorpsiyonunda kullanılabilirliğinin araştırılması. Bitki Koruma Bülteni, 53(1), 57-64.
-
Swathy, K., Vivekanandhan, P., Yuvaraj, A., Sarayut, P., Kim, J. S., Krutmuang, P. (2024). Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon, 10(1), e23406. https://doi.org/10.1016/j.heliyon.2023.e23406.
-
Tudi, M. D., Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D.T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health., 18(3), 1112. https://doi.org/10.3390/ijerph18031112
-
Tortella, G. R., Diez, M. C., Duran, N. (2005). Fungal Diversity and Use in Decomposition of Environmental Pollutants. Critical Reviews in Microbiology, 31(4), 197-212.
https://doi.org/10.1080/10408410500304066.