Image Presentation
BibTex RIS Cite

Advances in ferritin biosensors: rapid and cost-effective iron level assessment

Year 2025, Volume: 34 Issue: 2, 86 - 104
https://doi.org/10.38042/biotechstudies.1756979

Abstract

Iron is an essential element crucial for oxygen transport in the bloodstream; however, deviations from its normal physiological levels can result in health complications. Iron deficiency is a widespread condition and a leading cause of anemia globally. Conversely, excessive iron accumulation can cause severe liver damage, such as cirrhosis, by exacerbating oxidative stress. Consequently, assessing iron status through biomarkers like ferritin, which is a protein that reflects the body’s iron stores, is critical for diagnosing iron-related disorders accurately.
The ferritin test, which measures the concentration of ferritin protein in the blood, is a standard method for iron analysis. However, frequent hospital visits for such testing can be both time-intensive and expensive. This has driven significant interest in developing rapid and cost-effective methods for ferritin detection. To meet this demand, a variety of biosensors have been designed using diverse techniques to enable convenient ferritin analysis.
Despite considerable advancements in biosensor technologies, a comprehensive classification and analysis of these devices remain lacking, leaving researchers without a unified understanding of their comparative strengths and limitations. This review addresses this gap by systematically categorizing ferritin biosensors based on their underlying mechanisms. The review explores electrochemical biosensors, such as those based on graphene, microfluidics, and ZnO–Mn₃O₄ nanocomposites, as well as electrical biosensors using quantum dots or gold nanorods. Additionally, optical biosensors, including photonic crystal sensors, surface plasmon resonance systems and magnesium sulfide nanosheets are discussed in detail. Unconventional and immunoassay-based biosensors, such as nanodiamond-based magnetic sensors and nanowire FETs, are also examined to highlight the breadth of detection strategies available.
With the rising prevalence of iron-related disorders and the limitations of traditional diagnostic tools, this review underscores the critical need for portable, rapid, and cost-effective ferritin biosensing technologies, offering insights relevant to both clinical practice and future research.

References

  • Babulal, S. M., Rana, P., & Wu, H. (2024). Hexagonal 2D magnesium sulfide nanosheets biosensor for fluorescence detection of ferritin in serum sample: 2D alkaline earth metal sulfide (2D-AEMS) as an effective fluorescent biosensor. Applied Surface Science, 660, 159928. https://doi.org/10.1016/j.apsusc.2024.159928
  • Boonkaew, S., Teengam, P., Jampasa, S., Rengpipat, S., Siangproh, W., & Chailapakul, O. (2020). Cost-effective paper-based electrochemical immunosensor using a label-free assay for sensitive detection of ferritin. Analyst, 145(14), 5019–5026. https://doi.org/10.1039/d0an00564a
  • Chen, S., Huang, Y., Yang, Y., Luo, F., Zhao, Q., & Chen, G. (2021). Ultrasensitive Fe3+ ion detection based on pH-insensitive fluorescent graphene nanosensors in strong acid and neutral media. New Journal of Chemistry, 45(13), 5829–5836. https://doi.org/10.1039/d0nj06201d
  • Coulet, P. R. (1991). What is a biosensor? In L. J. Blum & P. R. Coulet (Eds.), Biosensor principles and applications (pp. 1–6). CRC Press. https://doi.org/10.1201/9780367810849
  • Cui, X., F. Yang, Y. Sha, & X. Yang. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. https://doi.org/10.1016/S0039-9140(03)00043-2
  • Ermakova, A., Pramanik, G., Cai, J., Algara-Siller, G., Kaiser, U., Weil, T., Tzeng, Y., Chang, H. C., McGuinness, L. P., Plenio, M. B., Naydenov, B., & Jelezko, F. (2013). Detection of a few Metallo-Protein molecules using color centers in nanodiamonds. Nano Letters, 13(7), 3305–3309. https://doi.org/10.1021/nl4015233
  • Ertaş, T., Dinç, B., Üstünsoy, R., Eraslan, H., Ergenç, A. F., & Bektaş, M. (2024). Novel electrochemical biosensor for Escherichia coli using gold-coated tungsten wires and antibody functionalized short multiwalled carbon nanotubes. Instrumentation Science & Technology, 52(2), 109–124. https://doi.org/10.1080/10739149.2023.2222801
  • Garg, M., M. Chatterjee, A. L. Sharma & S. Singh. (2020). Label-free approach for electrochemical ferritin sensing using biosurfactant stabilized tungsten disulfide quantum dots. Biosensors and Bioelectronics, 151, 111979. https://doi.org/10.1016/j.bios.2019.111979
  • Garg, M., Christensen, M., Iles, A., Sharma, A., Singh, S., & Pamme, N. (2020). Microfluidic-Based electrochemical immunosensing of ferritin. Biosensors, 10(8), 91. https://doi.org/10.3390/bios10080091
  • Garg, M., R. Rani, A. L. Sharma and S. Singh. (2021). White graphene quantum dots as electrochemical sensing platform for ferritin. Faraday Discussions, 227, 204-212. https://doi.org/10.1039/c9fd00111e
  • Gautam, N., Chattopadhyay, S., Kar, S., & Sarkar, A. (2023). Real-time detection of plasma ferritin by electrochemical biosensor developed for biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 235, 115579. https://doi.org/10.1016/j.jpba.2023.115579
  • Kartalov, E. P., Lin, D. H., Lee, D. T., Anderson, W. F., Taylor, C. R., & Scherer, A. (2008). Internally calibrated quantification of protein analytes in human serum by fluorescence immunoassays in disposable elastomeric microfluidic devices. Electrophoresis, 29(24), 5010–5016. https://doi.org/10.1002/elps.200800297
  • Lee, S., A. Aranyosi, M. D. Wong, J. H. Hong, J. Lowe, C. Chan, D. Garlock, S. Shaw, P. D. Beattie & Z. Kratochvil (2016) Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosensors and Bioelectronics, 78, 290-299. https://doi.org/10.1016/j.bios.2015.11.060
  • Lu, Z., O’Dell, D., Srinivasan, B., Rey, E., Wang, R., Vemulapati, S., Mehta, S., & Erickson, D. (2017). Rapid diagnostic testing platform for iron and vitamin A deficiency. Proceedings of the National Academy of Sciences, 114(51), 13513–13518. https://doi.org/10.1073/pnas.1711464114
  • Ma, J., Xue, D., Xu, T., Wei, G., Gu, C., Zhang, Y., & Jiang, T. (2023). Nonmetallic SERS-based biosensor for ultrasensitive and reproducible immunoassay of ferritin mediated by magnetic molybdenum disulfide nanoflowers and black phosphorus nanosheets. Colloids and Surfaces B Biointerfaces, 227, 113338. https://doi.org/10.1016/j.colsurfb.2023.113338
  • Mao, X., Du, T., Meng, L., & Song, T. (2015). Novel gold nanoparticle trimer reporter probe combined with dry-reagent cotton thread immunoassay device for rapid human ferritin test. Analytica Chimica Acta, 889, 172–178. https://doi.org/10.1016/j.aca.2015.06.031
  • Noah, N. M. & P. M. Ndangili. (2022). Nanosensor Arrays: Innovative Approaches for Medical Diagnosis. In S. Kaushik, V. Soni & E. Skotti (Eds.), Nanosensors for Futuristic Smart and Intelligent Healthcare Systems (pp. 350-386). CRC Press. https://doi.org/10.1201/9781003093534
  • Oshin, O., Kireev, D., Hlukhova, H., Idachaba, F., Akinwande, D., & Atayero, A. (2020). Graphene-Based biosensor for early detection of iron deficiency. Sensors, 20(13), 3688. https://doi.org/10.3390/s20133688
  • Peterson, R. D., Cunningham, B. T., & Andrade, J. E. (2014). A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosensors and Bioelectronics, 56, 320–327. https://doi.org/10.1016/j.bios.2014.01.022
  • Selvarajan, R. S., Gopinath, S. C. B., Zin, N. M., & Hamzah, A. A. (2021). Infection-Mediated clinical biomarkers for a COVID-19 electrical biosensing platform. Sensors, 21(11), 3829. https://doi.org/10.3390/s21113829
  • Song, T.-T., W. Wang, L.-L. Meng, Y. Liu, X.-B. Jia & X. Mao. (2017). Electrochemical detection of human ferritin based on gold nanorod reporter probe and cotton thread immunoassay device. Chinese Chemical Letters, 28(2), 226-230. https://doi.org/10.1016/j.cclet.2016.07.021
  • Wang, X., Tao, G., & Meng, Y. (2009). Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum. Microchimica Acta, 167(1–2), 147–152. https://doi.org/10.1007/s00604-009-0225-4
  • World Health Organization. (2020). WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. World Health Organization.
  • Yen, L., Pan, T., Lee, C., & Chao, T. (2016). Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor. Sensors and Actuators B Chemical, 230, 398–404. https://doi.org/10.1016/j.snb.2016.02.095
  • Zhang, X., Wang, S., Hu, M., & Xiao, Y. (2006). An immunosensor for ferritin based on agarose hydrogel. Biosensors and Bioelectronics, 21(11), 2180–2183. https://doi.org/10.1016/j.bios.2005.10.018
There are 25 citations in total.

Details

Primary Language English
Subjects Medical Biotechnology Diagnostics
Journal Section Review
Authors

Sena Vonalıoğlu 0009-0001-3804-8769

Muhammed Dağhan Okur 0009-0003-7417-8792

Recep Ustunsoy This is me 0000-0002-0448-9531

Tahsin Ertaş 0000-0002-1572-1383

Bircan Dinc This is me 0000-0002-9717-6410

Early Pub Date August 2, 2025
Publication Date
Submission Date October 16, 2024
Acceptance Date July 9, 2025
Published in Issue Year 2025 Volume: 34 Issue: 2

Cite

APA Vonalıoğlu, S., Okur, M. D., Ustunsoy, R., Ertaş, T., et al. (2025). Advances in ferritin biosensors: rapid and cost-effective iron level assessment. Biotech Studies, 34(2), 86-104. https://doi.org/10.38042/biotechstudies.1756979


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services