Research Article
BibTex RIS Cite

Tetranychus urticae ve Polyphagotarsonemus latus’un (Acari: Tetranychidae, Tarsonemidae) farklı yoğunluk düzeyleri ve beslenme sürelerinde fasulye bitkisinin klorofil içeriğine etkisi

Year 2024, , 5 - 13, 31.03.2024
https://doi.org/10.16955/bitkorb.1302239

Abstract

Çalışmada, Tetranychus urticae ve Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae)’un farklı başlangıç yoğunluk seviyeleri ve beslenme sürelerinin barbunya fasulyesi [Phaseolus vulgaris L. (Fabaceae)]'nin klorofil içeriğine etkisi araştırılmıştır. Denemeler, 3 cm çapındaki yaprak diskleri ve saksılı bitkiler üzerinde yürütülmüştür. Yaprak disk denemelerinde, her diske 0 (kontrol), 5, 10, 15, 20 ve 25 döllenmiş ergin dişi P. latus veya T. urticae (24-48 saat yaşlı) yerleştirilmiştir. Bulaştırmadan beş ve on gün sonra klorofil ölçümleri yapılmıştır. Saksılı bitki denemesi için ise, fasulye bitkileri, farklı yoğunluklarda P. latus veya T. urticae (5, 10, 15, 20 ve 25 ergin dişi/ bitki) ile bulaştırılmışken, temiz bitkiler kontrol grubunu oluşturmuştur. Klorofil ölçümleri 5 gün arayla toplam 5 kez gerçekleştirilmiştir. Salımdan 5 gün sonra, disk başına 15, 20 ve 25 T. urticae bulunduran disklerin klorofil içeriğinin, kontrol disklerinden daha düşük olduğu belirlenmiştir. Disk başına 10 ve üzeri miktarda T. urticae ile bulaşık diskler ise ikinci ölçüme kadar kurumuşlardır. Diğer yandan, bulaştırmadan 5 gün sonra, P. latus ile bulaşık ve temiz yaprak disklerinin klorofil içerikleri arasında herhangi bir farklılık belirlenmemiştir. Salımdan ancak 10 gün sonra, klorofil içeriği, tüm yoğunluk seviyelerinde, kontrol grubuna göre istatistiki olarak düşük çıkmıştır. Saksılı bitki denemelerinde ise, bulaşık bitkilerin klorofil içeriklerinin, temiz bitkilerinkinden T. urticae için salımın 10, P. latus için ise denemenin 20. gününden itibaren tüm bulaşıklık seviyelerinde önemli ölçüde düşük olduğu belirlenmiştir. Sonuçlar, fasulye bitkisinin klorofil içeriği ile akar yoğunluğu ve beslenme süresi arasında negatif bir korelasyon olduğunu ve klorofil içeriğinin artan akar yoğunluğu ve zamanla orantılı olarak azaldığını göstermiştir. Ayrıca P. latus'un, fasulye bitkisinin klorofil içeriğini etkileyebilmesi için, T. urticae ye göre daha uzun süre beslenmesi gerektiği de tespit edilmiştir.

Project Number

-

References

  • Al-Shammery K.A., Al-Khalaf A.A., 2022. Effect of host preference and micro habitats on the survival of Tetranychus urticae Koch (Acari: Tetranychidae) in Saudi Arabia. Journal of King Saud University – Science, 34 (4), 102030.
  • Androcioli H.G., Hoshino A.T., Ventura M.U., Hata F.T., Brugnerotto M.D.R., Constantino L.V., Marques F.A., 2021. Resistance of common bean genotypes to the broad mite, Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae): Offspring development and biochemical basis. Insects, 12 (10), 910. https://doi.org/10.3390/insects12100910
  • Atar F., Güney D., Bayraktar A., Yıldırım N., Turna İ., 2020. Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science, 4 (2), 245-256. https://doi.org/10.32328/turkjforsci.711389
  • Bahar B., 2015. Relationships among flag leaf chlorophyll content, agronomical traits, and some physiological traits of winter wheat genotypes. Dicle Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 4 (1), 1-5.
  • Bounfour M., Tanigoshi L.K., Chen C., Cameron S.J., Klauer S., 2002. Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested with Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Environmental Entomology, 31 (2), 215-220, https://doi.org/10.1603/0046-225X-31.2.215
  • Bueno A.F., Bueno R.C.O.F., Nabity P.D., Higley L.G., Fernandes O.A., 2009. Photosynthetic response of soybean to two spotted spider mite (Acari: Tetranychidae) injury. Brazilian Archives of Biology and Technology, 52 (4), 825-834. https://doi.org/10.1590/S1516-89132009000400005
  • Campbell R.J., Mobley K.N., Marini R.P., 1990. Growing conditions influence mite damage on apple and peach leaves. Horticultural Science, 25 (4), 445-448. https://doi.org/10.21273/HORTSCI.25.4.445
  • Cho M.R., Chung S.K., Lee W.K., 1993. Taxonomic study on cyclamen mite (Phytonemus pallidus) and broadmite (Polyphagotarsonemus latus). Korea Journal of Applied Entomology 32 (4), 433-439.
  • Devi M., Challa N., Mahesh G., 2019. Important mite pests of temperate and sub-tropical crops: A review. Journal of Entomology and Zoology Studies, 7(4), 1378-1384.
  • Evaristo A.B., Venzon M., Matos F.S., de Freitas R.G., Kuki K.N., Dias L.A., 2013. Susceptibility and physiological responses of Jatropha curcas accessions to broad mite infestation. Experimental and Applied Acarology, 60 (4), 485-496. https://doi.org/10.1007/s10493-013-9666-x
  • Ghimire B., Timsina D., Nepal J., 2015. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). Journal of Maize Research and Development, 1 (1), 134-145. https://doi.org/10.5281/zenodo.34263
  • Girish R., Srinivasa N., Basanth Y.S., Shruthi H.R., 2019. Response of chilli genotypes to the yellow mite, Polyphagotarsonemus latus Banks population and biochemical basis of resistance. Journal of Entomology and Zoology Studies, 7 (1), 250-255.
  • Gulati R., 2015. Potential of Beauveria bassiana (Balsamo) Vuillemin against Polyphagotarsonemus latus (Banks) in chilli. Department of Zoology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Ph.D. Thesis, 87 p., Hisar, India.
  • Güler S., Özçelik H., 2007. Relationships between leaf chlorophyll and yield related characters of dry bean (Phaseolus vulgaris L.). Asian Journal of Plant Sciences, 6 (4), 700-703.
  • Iatrou G., Cook C.M., Stamou G., Lanaras T., 1995. Chlorophyll fluorescence and leaf chlorophyll content of bean leaves injured by spider-mites (Acari: Tetranychidae). Experimental and Applied Acarology, 19, 581-591. https://doi.org/10.1007/BF00048813
  • Jayasinghe G.G., Mallik B., 2010. Growth stage based economic injury levels for two spotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae) on tomato, Lycopersicon esculentum Mill. Tropical Agricultural Research, 22 (1), 54-65.
  • Jeppson L.R., Baker E.W., Keifer H.H., 1975. Mites injurious to economic plants. University of California Press, Berkeley, California, 614 p.
  • Jiang Y.P., Ding X.T., Yang S.J., He L.Z., Zhou Q., 2019. Effects of yellow tea mite (Polyphagotarsonemus latus) invasion on the growth and physiological characteristics of cucumber. Acta Agriculturae Shanghai, 35 (3), 21-25.
  • Kabanova S.N., Chaika M.T., 2001. Correlation analysis of triticale morphology, chlorophyll content and productivity. Journal of Agronomy and Crop Science, 186 (4), 281-285. https://doi.org/10.1046/j.1439-037x.2001.00481.x
  • Lal C., Hariprasanna K., Rathnakumar A.L., Gor H.K., Chikani B.M., 2006. Gene action for surrogate traits of water-use efficiency and harvest index in peanut (Arachis hypogaea). Annals of Applied Biology, 148 (2), 165-172. https://doi.org/10.1111/j.1744-7348.2006.00047.x
  • Landeros J., Guevara L.P., Badii M.H., Flores A.E., Pámanes A., 2004. Effect of different densities of the twospotted spider mite Tetranychus urticae on CO2 assimilation, transpiration, and stomatal behaviour in rose leaves. Experimental and Applied Acarology, 32 (3), 187-198. https://doi.org/10.1023/b:appa.0000021788.07667.6b
  • Latha S., Hunumanthraya L., 2018. Screening of chilli genotypes against chilli thrips (Scirtothrips dorsalis Hood) and yellow mite [Polyphagotarsonemus latus (Banks)]. Journal of Entomology and Zoology Studies, 6 (2), 2739-2744.
  • Liburd O.E., Lopez L., Carrillo D., Revynthi A.M., Olaniyi O., Akyazi R., 2020. Integrated pest management of mites. In: Kogan M., Heinrichs E. (Eds). Integrated management of insect pests, current and future developments. Burleigh Dodds series in agricultural sciences; Burleigh Dodds Science Publishing. Cambridge UK. https://doi.org/10.19103/AS.2019.0047.26
  • Lindquist E., 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada, 136, 1-517. https://doi.org/10.4039/entm118136fv
  • Markwell J., Osterman J.C., Mitchell J.L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467-472. https://doi.org/10.1007/BF00032301
  • Nageswara Rao R.C., Talwar H.S., Wright G.C., 2001. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. Journal of Agronomy and Crop Science, 186 (3), 175-182.
  • Nyoike T.W., Liburd O.E., 2013. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. Journal of Economic Entomology, 106 (4), 1757-1766. https://doi.org/10.1603/ec12033
  • Park Y.L., Lee J.H., 2002. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 95 (5), 952–957. https://doi.org/10.1093/jee/95.5.952
  • Pena J., Ochoa R., Erbe E., 2000. Polyphagotarsonemus latus (Acari: Tarsonemidae) research status on citrus. Proceedings of IX International Citrus Congress, Florida, USA, 754-759.
  • Pritchard E., Baker E.W., 1955. A revision of the spider mite family Tetranychidae. Volume 2, Pacific Coast Entomological Society, 472 p.
  • Rajashekharappa K., Mallik B., Hegde J.N., Onkarappa S., 2018. Biological control of spider mite, Tetranychus urticae Koch on rose Vis-à-vis leaf quality. Journal of Entomology and Zoology Studies, 6 (1), 1588-1591.
  • Reddall A.A., Wilson L.J., Gregg L.J.P.C., Sadras V.O., 2007. Photosynthetic response of cotton to spider mite damage: interaction with light and compensatory mechanisms. Crop Science, 47 (5), 2047-2057. https://doi.org/10.2135/cropsci2006.11.0707
  • Shaabani J., Hossainzadeh A., Zeinali H., Naghavi M.R., 2021. A field study on common bean (Phaseolus vulgaris) response to Tetranychus urticae herbivory. Plant Breeding, 140 (3), 464-476. https://doi.org/10.1111/pbr.12914
  • Sheshshayee M.S., Bindumadhava H., Rachaputi N.R., Prasad T.G., Udayakumar M., Wright G.C., Nigam S.N., 2006. Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Annals of Applied Biology, 148 (1), 7-15. https://doi.org/10.1111/j.1744-7348.2005.00033.x
  • Sivritepe N., Kumral N.A., Erturk U., Yerlikaya C., Kumral A., 2009. Responses of grapevines to two-spotted spider mite mediated biotic stress. Journal of Biological Sciences, 9 (4), 311-318. http://dx.doi.org/10.3923/jbs.2009.311.318
  • Tehri K., Gulati R., Geroh M., 2014. The damage potential of Tetranychus urticae Koch to cucumber fruit and foliage: Effect of initial infestation density. Journal of Applied and Natural Science, 6 (1), 170-176. http://dx.doi.org/10.31018/jans.v6i1.395
  • Wang G., Kang M.S., Moreno O., 1999. Genetic analyses of grain-filling rate and duration in maize. Field Crops Research, 61 (3), 211-222. https://doi.org/10.1016/S0378-4290(98)00163-4
  • Zhang Z.Q., 2003. Mites of greenhouses: identification, biology and control. CABI Publishing, Cambridge, UK, 244 p.
  • Ziaee M., Nikpay A., 2016. Effect of mite damage on chlorophyll content of commercial sugarcane varieties using SPAD meter. Journal of Sugarcane Research, 6, 59-62.

Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants

Year 2024, , 5 - 13, 31.03.2024
https://doi.org/10.16955/bitkorb.1302239

Abstract

The study investigated the effects of different initial infestation levels and feeding durations of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) on the chlorophyll content of the pinto bean plants [Phaseolus vulgaris L. (Fabaceae)]. The experiment was carried out on 3 cm diameter leaf discs and potted plants. To determine the effects of mite feeding on the chlorophyll content of leaf disc, 0 (control), 5, 10, 15, 20, and 25 mated adult females (24-48 hours old) were separately placed on each disc. Chlorophyll measurements were made 5 and 10 days after the initial infestation. For the potted plant bioassay, young plants were infested separately with different densities of P. latus or T. urticae (5, 10, 15, 20, and 25 females per plant) while noninfested plants acted as the control. Data were obtained at intervals of 5 days for a total of 5 times. The chlorophyll contents at infestation levels of 15, 20, and 25 T. urticae per disc were statistically lower than the control discs after exposure for 5 days. The heavily infested discs with 10 or more T. urticae were destroyed until the second measurement. On the other hand, there was no significant difference between the chlorophyll contents of P. latus-infested and noninfested discs 5 days after infestation. However, the content was significantly lower in infested discs at all infestation levels than in noninfested discs 10 days after infestation. According to the potted plant experiment, the chlorophyll contents of T. urticae and P. latus-infested plants were significantly lower than the noninfested plants at all infestation levels from the 10th and 20th days of the infestation, respectively. A highly significant negative correlation was recorded between chlorophyll content and mite density, as well as exposure time indicating that the leaf chlorophyll content of infested bean plants decreased with increasing mite density and time. It was also determined that P. latus required a longer feeding time than T. urticae to affect the chlorophyll content of the bean plants.

Supporting Institution

-

Project Number

-

Thanks

We are grateful to Eddie A. Ueckermann (ARC-Plant Protection Research Institute, South Africa) for confirming the identification of P. latus. Part of this research was presented as a poster at the 2nd International Congress on Engineering and Life Science (11-14 April 2019, Kastamonu/TURKEY) and 8th Plant Protection Congress with International Participation (1 August 24-28, 2021, Online), and was published as the abstract in the abstract book.

References

  • Al-Shammery K.A., Al-Khalaf A.A., 2022. Effect of host preference and micro habitats on the survival of Tetranychus urticae Koch (Acari: Tetranychidae) in Saudi Arabia. Journal of King Saud University – Science, 34 (4), 102030.
  • Androcioli H.G., Hoshino A.T., Ventura M.U., Hata F.T., Brugnerotto M.D.R., Constantino L.V., Marques F.A., 2021. Resistance of common bean genotypes to the broad mite, Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae): Offspring development and biochemical basis. Insects, 12 (10), 910. https://doi.org/10.3390/insects12100910
  • Atar F., Güney D., Bayraktar A., Yıldırım N., Turna İ., 2020. Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science, 4 (2), 245-256. https://doi.org/10.32328/turkjforsci.711389
  • Bahar B., 2015. Relationships among flag leaf chlorophyll content, agronomical traits, and some physiological traits of winter wheat genotypes. Dicle Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 4 (1), 1-5.
  • Bounfour M., Tanigoshi L.K., Chen C., Cameron S.J., Klauer S., 2002. Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested with Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Environmental Entomology, 31 (2), 215-220, https://doi.org/10.1603/0046-225X-31.2.215
  • Bueno A.F., Bueno R.C.O.F., Nabity P.D., Higley L.G., Fernandes O.A., 2009. Photosynthetic response of soybean to two spotted spider mite (Acari: Tetranychidae) injury. Brazilian Archives of Biology and Technology, 52 (4), 825-834. https://doi.org/10.1590/S1516-89132009000400005
  • Campbell R.J., Mobley K.N., Marini R.P., 1990. Growing conditions influence mite damage on apple and peach leaves. Horticultural Science, 25 (4), 445-448. https://doi.org/10.21273/HORTSCI.25.4.445
  • Cho M.R., Chung S.K., Lee W.K., 1993. Taxonomic study on cyclamen mite (Phytonemus pallidus) and broadmite (Polyphagotarsonemus latus). Korea Journal of Applied Entomology 32 (4), 433-439.
  • Devi M., Challa N., Mahesh G., 2019. Important mite pests of temperate and sub-tropical crops: A review. Journal of Entomology and Zoology Studies, 7(4), 1378-1384.
  • Evaristo A.B., Venzon M., Matos F.S., de Freitas R.G., Kuki K.N., Dias L.A., 2013. Susceptibility and physiological responses of Jatropha curcas accessions to broad mite infestation. Experimental and Applied Acarology, 60 (4), 485-496. https://doi.org/10.1007/s10493-013-9666-x
  • Ghimire B., Timsina D., Nepal J., 2015. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). Journal of Maize Research and Development, 1 (1), 134-145. https://doi.org/10.5281/zenodo.34263
  • Girish R., Srinivasa N., Basanth Y.S., Shruthi H.R., 2019. Response of chilli genotypes to the yellow mite, Polyphagotarsonemus latus Banks population and biochemical basis of resistance. Journal of Entomology and Zoology Studies, 7 (1), 250-255.
  • Gulati R., 2015. Potential of Beauveria bassiana (Balsamo) Vuillemin against Polyphagotarsonemus latus (Banks) in chilli. Department of Zoology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Ph.D. Thesis, 87 p., Hisar, India.
  • Güler S., Özçelik H., 2007. Relationships between leaf chlorophyll and yield related characters of dry bean (Phaseolus vulgaris L.). Asian Journal of Plant Sciences, 6 (4), 700-703.
  • Iatrou G., Cook C.M., Stamou G., Lanaras T., 1995. Chlorophyll fluorescence and leaf chlorophyll content of bean leaves injured by spider-mites (Acari: Tetranychidae). Experimental and Applied Acarology, 19, 581-591. https://doi.org/10.1007/BF00048813
  • Jayasinghe G.G., Mallik B., 2010. Growth stage based economic injury levels for two spotted spider mite, Tetranychus urticae Koch (Acari, Tetranychidae) on tomato, Lycopersicon esculentum Mill. Tropical Agricultural Research, 22 (1), 54-65.
  • Jeppson L.R., Baker E.W., Keifer H.H., 1975. Mites injurious to economic plants. University of California Press, Berkeley, California, 614 p.
  • Jiang Y.P., Ding X.T., Yang S.J., He L.Z., Zhou Q., 2019. Effects of yellow tea mite (Polyphagotarsonemus latus) invasion on the growth and physiological characteristics of cucumber. Acta Agriculturae Shanghai, 35 (3), 21-25.
  • Kabanova S.N., Chaika M.T., 2001. Correlation analysis of triticale morphology, chlorophyll content and productivity. Journal of Agronomy and Crop Science, 186 (4), 281-285. https://doi.org/10.1046/j.1439-037x.2001.00481.x
  • Lal C., Hariprasanna K., Rathnakumar A.L., Gor H.K., Chikani B.M., 2006. Gene action for surrogate traits of water-use efficiency and harvest index in peanut (Arachis hypogaea). Annals of Applied Biology, 148 (2), 165-172. https://doi.org/10.1111/j.1744-7348.2006.00047.x
  • Landeros J., Guevara L.P., Badii M.H., Flores A.E., Pámanes A., 2004. Effect of different densities of the twospotted spider mite Tetranychus urticae on CO2 assimilation, transpiration, and stomatal behaviour in rose leaves. Experimental and Applied Acarology, 32 (3), 187-198. https://doi.org/10.1023/b:appa.0000021788.07667.6b
  • Latha S., Hunumanthraya L., 2018. Screening of chilli genotypes against chilli thrips (Scirtothrips dorsalis Hood) and yellow mite [Polyphagotarsonemus latus (Banks)]. Journal of Entomology and Zoology Studies, 6 (2), 2739-2744.
  • Liburd O.E., Lopez L., Carrillo D., Revynthi A.M., Olaniyi O., Akyazi R., 2020. Integrated pest management of mites. In: Kogan M., Heinrichs E. (Eds). Integrated management of insect pests, current and future developments. Burleigh Dodds series in agricultural sciences; Burleigh Dodds Science Publishing. Cambridge UK. https://doi.org/10.19103/AS.2019.0047.26
  • Lindquist E., 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada, 136, 1-517. https://doi.org/10.4039/entm118136fv
  • Markwell J., Osterman J.C., Mitchell J.L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467-472. https://doi.org/10.1007/BF00032301
  • Nageswara Rao R.C., Talwar H.S., Wright G.C., 2001. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. Journal of Agronomy and Crop Science, 186 (3), 175-182.
  • Nyoike T.W., Liburd O.E., 2013. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. Journal of Economic Entomology, 106 (4), 1757-1766. https://doi.org/10.1603/ec12033
  • Park Y.L., Lee J.H., 2002. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 95 (5), 952–957. https://doi.org/10.1093/jee/95.5.952
  • Pena J., Ochoa R., Erbe E., 2000. Polyphagotarsonemus latus (Acari: Tarsonemidae) research status on citrus. Proceedings of IX International Citrus Congress, Florida, USA, 754-759.
  • Pritchard E., Baker E.W., 1955. A revision of the spider mite family Tetranychidae. Volume 2, Pacific Coast Entomological Society, 472 p.
  • Rajashekharappa K., Mallik B., Hegde J.N., Onkarappa S., 2018. Biological control of spider mite, Tetranychus urticae Koch on rose Vis-à-vis leaf quality. Journal of Entomology and Zoology Studies, 6 (1), 1588-1591.
  • Reddall A.A., Wilson L.J., Gregg L.J.P.C., Sadras V.O., 2007. Photosynthetic response of cotton to spider mite damage: interaction with light and compensatory mechanisms. Crop Science, 47 (5), 2047-2057. https://doi.org/10.2135/cropsci2006.11.0707
  • Shaabani J., Hossainzadeh A., Zeinali H., Naghavi M.R., 2021. A field study on common bean (Phaseolus vulgaris) response to Tetranychus urticae herbivory. Plant Breeding, 140 (3), 464-476. https://doi.org/10.1111/pbr.12914
  • Sheshshayee M.S., Bindumadhava H., Rachaputi N.R., Prasad T.G., Udayakumar M., Wright G.C., Nigam S.N., 2006. Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Annals of Applied Biology, 148 (1), 7-15. https://doi.org/10.1111/j.1744-7348.2005.00033.x
  • Sivritepe N., Kumral N.A., Erturk U., Yerlikaya C., Kumral A., 2009. Responses of grapevines to two-spotted spider mite mediated biotic stress. Journal of Biological Sciences, 9 (4), 311-318. http://dx.doi.org/10.3923/jbs.2009.311.318
  • Tehri K., Gulati R., Geroh M., 2014. The damage potential of Tetranychus urticae Koch to cucumber fruit and foliage: Effect of initial infestation density. Journal of Applied and Natural Science, 6 (1), 170-176. http://dx.doi.org/10.31018/jans.v6i1.395
  • Wang G., Kang M.S., Moreno O., 1999. Genetic analyses of grain-filling rate and duration in maize. Field Crops Research, 61 (3), 211-222. https://doi.org/10.1016/S0378-4290(98)00163-4
  • Zhang Z.Q., 2003. Mites of greenhouses: identification, biology and control. CABI Publishing, Cambridge, UK, 244 p.
  • Ziaee M., Nikpay A., 2016. Effect of mite damage on chlorophyll content of commercial sugarcane varieties using SPAD meter. Journal of Sugarcane Research, 6, 59-62.
There are 39 citations in total.

Details

Primary Language English
Subjects Entomology in Agriculture
Journal Section Research Article
Authors

Rana Akyazı 0000-0002-0054-4222

Mete Soysal 0000-0001-6640-4807

Project Number -
Early Pub Date March 26, 2024
Publication Date March 31, 2024
Submission Date May 25, 2023
Acceptance Date November 17, 2023
Published in Issue Year 2024

Cite

APA Akyazı, R., & Soysal, M. (2024). Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Protection Bulletin, 64(1), 5-13. https://doi.org/10.16955/bitkorb.1302239
AMA Akyazı R, Soysal M. Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Protection Bulletin. March 2024;64(1):5-13. doi:10.16955/bitkorb.1302239
Chicago Akyazı, Rana, and Mete Soysal. “Effect of Tetranychus Urticae and Polyphagotarsonemus Latus (Acari: Tetranychidae, Tarsonemidae) at Different Infestation Levels and Feeding Durations on Chlorophyll Content of Bean Plants”. Plant Protection Bulletin 64, no. 1 (March 2024): 5-13. https://doi.org/10.16955/bitkorb.1302239.
EndNote Akyazı R, Soysal M (March 1, 2024) Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Protection Bulletin 64 1 5–13.
IEEE R. Akyazı and M. Soysal, “Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants”, Plant Protection Bulletin, vol. 64, no. 1, pp. 5–13, 2024, doi: 10.16955/bitkorb.1302239.
ISNAD Akyazı, Rana - Soysal, Mete. “Effect of Tetranychus Urticae and Polyphagotarsonemus Latus (Acari: Tetranychidae, Tarsonemidae) at Different Infestation Levels and Feeding Durations on Chlorophyll Content of Bean Plants”. Plant Protection Bulletin 64/1 (March 2024), 5-13. https://doi.org/10.16955/bitkorb.1302239.
JAMA Akyazı R, Soysal M. Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Protection Bulletin. 2024;64:5–13.
MLA Akyazı, Rana and Mete Soysal. “Effect of Tetranychus Urticae and Polyphagotarsonemus Latus (Acari: Tetranychidae, Tarsonemidae) at Different Infestation Levels and Feeding Durations on Chlorophyll Content of Bean Plants”. Plant Protection Bulletin, vol. 64, no. 1, 2024, pp. 5-13, doi:10.16955/bitkorb.1302239.
Vancouver Akyazı R, Soysal M. Effect of Tetranychus urticae and Polyphagotarsonemus latus (Acari: Tetranychidae, Tarsonemidae) at different infestation levels and feeding durations on chlorophyll content of bean plants. Plant Protection Bulletin. 2024;64(1):5-13.

134351364813650136491344113445