Research Article
BibTex RIS Cite

Bir herbisit, ürün rotasyon programındaki bitkilerin hastalıklarını nasıl etkileyebilir? Othello® OD üzerine bir vaka çalışması

Year 2025, Volume: 65 Issue: 4, 111 - 120, 01.01.2026
https://doi.org/10.16955/bitkorb.1510563

Abstract

Herbisitler, bitki hastalıklarının ürün rotasyonu programlarının entegre yönetiminde önemli bir rol oynayabilir. Trichoderma türleri, tarımda kullanılan başlıca biyolojik kontrol funguslarıdır (BCF). Bu çalışma, Othello® OD herbisitinin T. asperelloides'in yanı sıra bazı fitopatojenik fungusların (Bipolaris sp., Fusarium graminearum, F. oxysporum ve Rhizoctonia solani) in vitro büyümesi üzerindeki etkisini incelemiştir. In vitro da herbisitin fungusların büyümesi üzerine etkisinin belirlenmesi çalışmasında, temel besiyeri olarak patates dekstroz agar kullanılmıştır. Daha sonra petriler karanlıkta 26 °C’de inkübe edilmiştir. Sonuçlar, test edilen tüm fungusların Othello® OD herbisitine duyarlılıklarının istatistiksel olarak benzer olduğunu göstermiştir. Buna rağmen, T. asperelloides'in diğer test edilen funguslara kıyasla önemli ölçüde daha yüksek büyüme hızı ve Othello® OD’ye karşı ihmal edilebilir derecede düşük duyarlılığı, bu herbisitin ve T. asperelloides'in bir ürün rotasyonu programında temel hastalıkların yönetimi için kullanılma potansiyelini göstermektedir. COBALT aracı kullanılarak asetolaktat sentetaz amino asit dizilerinin hizalanması, üç fungus grubunu ayıran 17 düğüme sahip bir ağaç ortaya çıkarmıştır. Bipolaris oryzae ve B. sorokiniana'nın asetolaktat enzimleri, tek bir grup oluşturacak kadar benzerdir ve bu da bunların ayrı türler olarak kabul edilebileceğini göstermiştir. İkinci grupta, Fusarium oxysporum'un enzimi, F. graminearum'dan ziyade T. asperelloides'in enzimine daha benzerdir. Üçüncü grupta ise yalnızca R. solani izolatlarından elde edilen enzimler yer almıştır.

References

  • Abyawi F., Pakdaman B.S., Elahifard E., 2024. Oxadiazon, an herbicide potentially beneficial in integrated management of plant diseases. Genetic Engineering and Biosafety, 13 (1), 63-73. .
  • Amorim Franco T.M., Blanchard J.S., 2017. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drug ability. Biochemistry, 56 (44), 5849-5865. doi: 10.1021/acs.biochem.7b00849
  • Anonymous, 2019. Othello® OD. https://www.cropscience.bayer.co.nz/products/herbicides/othello-od (accessed date: 29.12.2024).
  • Brosnan J.T., Brosnan M.E., 2006. Branched-chain amino acids: enzyme and substrate regulation. The Journal of Nutrition, 136 (1 Suppl.), 207-211. doi: 10.1093/jn/136.1.207S
  • Cambaza E., 2018. Comprehensive description of Fusarium graminearum pigments and related compounds. Foods, 7 (10), 165. https://doi.org/10.3390/foods7100165
  • Chou P.Y., Fasman G.D., 1973. Structural and functional role of leucine residues in proteins. Journal of Molecular Biology, 74 (3), 263-281. doi: 10.1016/0022-2836(73)90372-0
  • Dean R., Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13 (4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • Dill K.A., 1990. Dominant forces in protein folding. Biochemistry, 29 (31), 7133-7155. doi: 10.1021/bi00483a001
  • Du Y., Zhang H., Hong L., Wang J., Zheng X., Zhang Z., 2013. Acetolactate synthases Mollv2 and Mollv6 are required for infection-related morphogenesis in Magnaporthe oryzae. Molecular Plant Pathology, 14 (9), 870-884. doi:10.1111/mpp.12053
  • Garcia M.D., Chua S.M.H., Low Y.S., Lee Y.T., Agnew-Francis K., Wang J.G., Nouwens A., Lonhienne T., Williams C.M., Fraser J.A., Guddat L.W., 2018. Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proceedings of the National Academy of Sciences of the United States of America, PNAS, 115 (41), E9649-E9658. https://doi.org/10.1073/pnas.1809422115
  • Gmoser R., Ferreira J.A., Lennartsson P.R., Taherzadeh M.J., 2017. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology & Biotechnology, 4, 4. https://doi.org/10.1186/s40694-017-0033-2.
  • Jin J.M., Lee J., Lee Y.W., 2010. Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiology Letters, 302 (2), 197-202. doi: 10.1111/j.1574-6968.2009.01854.x.
  • Lagashetti A., Dufossé L., Singh S.K., Singh P.N., 2019. Fungal pigments and their prospects in different industries. Microorganisms, 7 (12), 604. https://doi.org/10.3390/microorganisms7120604
  • Li R., Li Y., Xu W., Liu W., Xu X., Bi Y., Prusky D., 2024. Abrm1-mediated melanin synthesis is essential to growth and development, stress adaption, and pathogenicity in Alternaria alternata. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1327765
  • Liang Y.F., Long Z.X., Zhang Y.J., Luo C.Y., Yan L.T., Gao W.Y., Li H., 2021. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie, 184, 72-87. https://doi.org/10.1016/j.biochi.2021.02.008
  • Lipman D.J., Pearson W.R., 1985. Rapid and sensitive protein similarity searches. Science, 227 (4693), 1435-1441. doi: 10.1126/science.2983426
  • Liu X., Han Q., Xu J., Wang J., Shi J., 2015. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum. Scientific Reports, 5, 16315. https://doi.org/10.1038/srep16315
  • Liu B., Ji S., Zhang H., Wang Y., Liu Z., 2020. Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiological Research, 235, 126445. https://doi.org/10.1016/j.micres.2020.126445
  • Loubet I., Caddoux L., Fontaine S., Michel S., Pernin F., Barres B., Le Corre V., Delye C., 2023. A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Scientific Reports, 11 (1), 19904. https://doi.org/10.1038/s41598-021-99306-9.
  • Luo F., Zhou H., Zhou X., Xie X., Li Y., Hu F., Huang B., 2020. The intermediates in branched-chain amino acid biosynthesis are indispensable for conidial germination of the insect-pathogenic fungus Metarhizium robertsii. Applied and Environmental Microbiology, 86 (20), e01682-20. https://doi.org/10.1128/AEM.01682-20
  • Majd R., Chamanabad H.R.M., Zand E., Mohebodini M., Khiavi H.K., Alebrahim M.T., Tseng T.M., 2019. Evaluation of herbicide treatments for control of wild gladiolus (Gladiolus segetum) in wheat. Applied Ecology and Environmental Research, 17 (3), 5561-5570.
  • Medentsev A.G., Arinbasarova A., Akimenko V.K., 2005. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Applied Biochemistry and Microbiology, 41 (5), 503-507. https://doi.org/10.1007/s10438-005-0091-8
  • Mehta S., Kumar A., Achary V.M.M., Ganesan P., Rathi N., Singh A., Sahu K.P., Lal S.K., Das T.K., Reddy M.K., 2021. Antifungal activity of glyphosate against fungal blast disease on glyphosate-tolerant OsmEPSPS transgenic rice. Plant Science, 311, 111009. https://doi.org/10.1016/j.plantsci.2021.111009
  • Moura A., Savageau M.A., Alves R., 2013. Relative amino acid composition signatures of organisms and environments. PLOS ONE, 8 (10), e77319. https://doi.org/10.1371/journal.pone.0077319
  • Neinast M., Murashige D., Arany Z., 2018. Branched chain amino acids. Annual Review of Physiology, 81, 139-164. doi: 10.1146/annurev-physiol-020518-114455
  • Pakdaman B.S., Khabbaz H., Mohammadi Goltapeh E., Afshari H.A., 2002. In vitro studies on the effects of sugar beet field prevalent herbicides on the beneficial and deleterious fungal species. Plant Pathology Journal, 1 (1), 23-24.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2007a. In vitro studies on the integrated control of rapeseed white stem rot disease through the application of herbicides and Trichoderma species. Pakistan Journal of Biological Sciences, 10 (1), 7-12.
  • Pakdaman B.S., Mohammadi Goltapeh E., Sepehrifar R., Pouriesa M., Rahimi Fard M., Moradi F., Modarres S.A.M., 2007b. Cellular membranes as the sites for the antifungal activity of the herbicide sethoxydim. Pakistan Journal of Biological Sciences, 10 (15), 2480-2484.
  • Pakdaman B.S., Mohammadi Goltapeh E., Soltani B.M., Talebi A.A., Naderpoor M., Kruszewska J.S., Piłsyk S., Sarrocco S., Vannacci G., 2013. Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. Journal of Biofertilizers & Biopesticides, 4, 137. https://doi.org/10.4172/2155-6202.1000137.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2018a. Weeds, herbicides and plant disease management. In: Sustainable Agriculture Reviews 31 Biocontrol, Lichtfouse, E. (Ed.). Springer Cham, 41-178 p.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2018b. Effect of agricultural chemicals and organic amendments on biological control fungi. In: Sustainable Agriculture Reviews 31 Biocontrol, Lichtfouse, E. (Ed.). Springer Cham, 217-359 p.
  • Pakdaman B.S., Mohammadi N., 2020. Creation of Trichoderman: from an idea to realization. Journal of Biotechnology and Bioresearch, 2 (3), JBB000540.2020
  • Pakdaman B.S., Elahifard E., 2025. Quantitative confrontation test: effect of Atlantis® OD 42 on Trichoderma asperelloides & Fusarium graminearum interaction: Scientia Agriculturae Bohemica,56 (3), 10, 1-13. https://doi.org/10.7160/sab.2025.560310
  • Papadopoulos J.S., Agarwala R., 2007. Cobalt: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23 (9), 1073-1079. doi: 10.1093/bioinformatics/btm076
  • Pascoe M.J., Maillard J.Y., 2021. The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Letters in Applied Microbiology, 72 (4), 375-381. doi: 10.1111/lam.13437
  • Podder D., Ghosh S.Kr., 2019. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Scientific Reports, 9 (1), 1108. https://doi.org/10.1038/s41598-018-37108-2
  • Sandmann G., 2022. Carotenoids and their biosynthesis in fungi. Molecules, 27 (4), 1431. https://doi.org/10.3390/molecules27041431
  • Shao S.N., Li B., Sun Q., Guo P.R., Du Y.J., Huang J.F., 2022. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microsclerotial and conidial formation and virulence in Verticillium dahliae. Fungal Genetics and Biology, 159, 103667. https://doi.org/10.1016/j.fgb.2022.103667
  • Sharvelle E.G., 1961. The nature and uses of modern fungicides. Burgers Publication Company, Minneapolis, 308 p.
  • Singh R.S., 2001. Plant disease management. Science Publishers, Enfield, USA, 238 p.
  • Singh P., Piotrowski M., Gau A.E., 2005. Purification and partial characterization of an extracellular melanoprotein from the fungus Venturia inaequalis. Zeitschrift für die Naturforschung. C, Journal of Biosciences, 60 (1-2), 109-115. doi: 10.1515/znc-2005-1-220
  • Singkaravanit S., Kinoshita H., Ihara F., Nihira T., 2009. Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi. Applied Microbiology and Biotechnology, 85 (5), 1463-1472. doi: 10.1007/s00253-009-2171-9
  • Tseng M.N., Chung P.C., Tzean S.S., 2011. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Applied and Environmental Microbiology, 77 (13), 4508-4519. doi: 10.1128/AEM.02033-10
  • Zain Ul Arifeen M., Ma Z.J., Wu S., Liu J.Z., Xue Y.R., 2021. Effect of oxygen concentrations and branched-chain amino acids on the growth and development of sub-seafloor fungus, Schizophyllum commune 20R-7-F01. Applied and Environmental Microbiology, 23 (11), 6940-6952. https://doi.org/10.1128/aem.01279-24
  • Zarrin M., Rahdar M., Gholamian A., 2015. Biological control of the nematode infective larvae of Trichostrongylidae family with filamentous fungi. Jundishapur Journal of Microbiology, 8 (3), e17614. https://doi.org/10.5812/jjm.17614

How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD

Year 2025, Volume: 65 Issue: 4, 111 - 120, 01.01.2026
https://doi.org/10.16955/bitkorb.1510563

Abstract

Herbicides can play an essential role in crop rotation programs' integrated management of plant diseases. Trichoderma species are major biological control fungi (BCF) used in agriculture. This study examined the effect of the herbicidal product Othello® OD on the in vitro growth of T. asperelloides, as well as some phytopathogenic fungi (Bipolaris sp., Fusarium graminearum, F. oxysporum, and Rhizoctonia solani). The poisoned food method was utilised with potato dextrose agar as the basal medium. The plates were then incubated at 26 °C in the dark. Results showed that all tested fungi were statistically similar in their sensitivity to the herbicide Othello® OD. Despite this, the significantly higher growth rate of T. asperelloides compared to the other tested fungi and its negligibly low sensitivity to Othello® OD suggests the potential of using the herbicidal product and T. asperelloides for managing essential diseases in a crop rotation program. The alignment of acetolactate synthase amino acid sequences using COBALT tool obtained a tree with 17 nodes separating the three fungal groups. The acetolactate enzymes of Bipolaris oryzae and B. sorokiniana were similar enough to form a unique group, indicating that they may be considered distinct species. In the second group, the enzyme of Fusarium oxysporum was more identical to that of T. asperelloides than F. graminearum. The third group only included enzymes from R. solani isolates.

Thanks

This article is based on the B.Sc. research project performed by the first author in the Laboratory of Phytopathology, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of XXX.

References

  • Abyawi F., Pakdaman B.S., Elahifard E., 2024. Oxadiazon, an herbicide potentially beneficial in integrated management of plant diseases. Genetic Engineering and Biosafety, 13 (1), 63-73. .
  • Amorim Franco T.M., Blanchard J.S., 2017. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drug ability. Biochemistry, 56 (44), 5849-5865. doi: 10.1021/acs.biochem.7b00849
  • Anonymous, 2019. Othello® OD. https://www.cropscience.bayer.co.nz/products/herbicides/othello-od (accessed date: 29.12.2024).
  • Brosnan J.T., Brosnan M.E., 2006. Branched-chain amino acids: enzyme and substrate regulation. The Journal of Nutrition, 136 (1 Suppl.), 207-211. doi: 10.1093/jn/136.1.207S
  • Cambaza E., 2018. Comprehensive description of Fusarium graminearum pigments and related compounds. Foods, 7 (10), 165. https://doi.org/10.3390/foods7100165
  • Chou P.Y., Fasman G.D., 1973. Structural and functional role of leucine residues in proteins. Journal of Molecular Biology, 74 (3), 263-281. doi: 10.1016/0022-2836(73)90372-0
  • Dean R., Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D., 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13 (4), 414-430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • Dill K.A., 1990. Dominant forces in protein folding. Biochemistry, 29 (31), 7133-7155. doi: 10.1021/bi00483a001
  • Du Y., Zhang H., Hong L., Wang J., Zheng X., Zhang Z., 2013. Acetolactate synthases Mollv2 and Mollv6 are required for infection-related morphogenesis in Magnaporthe oryzae. Molecular Plant Pathology, 14 (9), 870-884. doi:10.1111/mpp.12053
  • Garcia M.D., Chua S.M.H., Low Y.S., Lee Y.T., Agnew-Francis K., Wang J.G., Nouwens A., Lonhienne T., Williams C.M., Fraser J.A., Guddat L.W., 2018. Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proceedings of the National Academy of Sciences of the United States of America, PNAS, 115 (41), E9649-E9658. https://doi.org/10.1073/pnas.1809422115
  • Gmoser R., Ferreira J.A., Lennartsson P.R., Taherzadeh M.J., 2017. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology & Biotechnology, 4, 4. https://doi.org/10.1186/s40694-017-0033-2.
  • Jin J.M., Lee J., Lee Y.W., 2010. Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiology Letters, 302 (2), 197-202. doi: 10.1111/j.1574-6968.2009.01854.x.
  • Lagashetti A., Dufossé L., Singh S.K., Singh P.N., 2019. Fungal pigments and their prospects in different industries. Microorganisms, 7 (12), 604. https://doi.org/10.3390/microorganisms7120604
  • Li R., Li Y., Xu W., Liu W., Xu X., Bi Y., Prusky D., 2024. Abrm1-mediated melanin synthesis is essential to growth and development, stress adaption, and pathogenicity in Alternaria alternata. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1327765
  • Liang Y.F., Long Z.X., Zhang Y.J., Luo C.Y., Yan L.T., Gao W.Y., Li H., 2021. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie, 184, 72-87. https://doi.org/10.1016/j.biochi.2021.02.008
  • Lipman D.J., Pearson W.R., 1985. Rapid and sensitive protein similarity searches. Science, 227 (4693), 1435-1441. doi: 10.1126/science.2983426
  • Liu X., Han Q., Xu J., Wang J., Shi J., 2015. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum. Scientific Reports, 5, 16315. https://doi.org/10.1038/srep16315
  • Liu B., Ji S., Zhang H., Wang Y., Liu Z., 2020. Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiological Research, 235, 126445. https://doi.org/10.1016/j.micres.2020.126445
  • Loubet I., Caddoux L., Fontaine S., Michel S., Pernin F., Barres B., Le Corre V., Delye C., 2023. A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.). Scientific Reports, 11 (1), 19904. https://doi.org/10.1038/s41598-021-99306-9.
  • Luo F., Zhou H., Zhou X., Xie X., Li Y., Hu F., Huang B., 2020. The intermediates in branched-chain amino acid biosynthesis are indispensable for conidial germination of the insect-pathogenic fungus Metarhizium robertsii. Applied and Environmental Microbiology, 86 (20), e01682-20. https://doi.org/10.1128/AEM.01682-20
  • Majd R., Chamanabad H.R.M., Zand E., Mohebodini M., Khiavi H.K., Alebrahim M.T., Tseng T.M., 2019. Evaluation of herbicide treatments for control of wild gladiolus (Gladiolus segetum) in wheat. Applied Ecology and Environmental Research, 17 (3), 5561-5570.
  • Medentsev A.G., Arinbasarova A., Akimenko V.K., 2005. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Applied Biochemistry and Microbiology, 41 (5), 503-507. https://doi.org/10.1007/s10438-005-0091-8
  • Mehta S., Kumar A., Achary V.M.M., Ganesan P., Rathi N., Singh A., Sahu K.P., Lal S.K., Das T.K., Reddy M.K., 2021. Antifungal activity of glyphosate against fungal blast disease on glyphosate-tolerant OsmEPSPS transgenic rice. Plant Science, 311, 111009. https://doi.org/10.1016/j.plantsci.2021.111009
  • Moura A., Savageau M.A., Alves R., 2013. Relative amino acid composition signatures of organisms and environments. PLOS ONE, 8 (10), e77319. https://doi.org/10.1371/journal.pone.0077319
  • Neinast M., Murashige D., Arany Z., 2018. Branched chain amino acids. Annual Review of Physiology, 81, 139-164. doi: 10.1146/annurev-physiol-020518-114455
  • Pakdaman B.S., Khabbaz H., Mohammadi Goltapeh E., Afshari H.A., 2002. In vitro studies on the effects of sugar beet field prevalent herbicides on the beneficial and deleterious fungal species. Plant Pathology Journal, 1 (1), 23-24.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2007a. In vitro studies on the integrated control of rapeseed white stem rot disease through the application of herbicides and Trichoderma species. Pakistan Journal of Biological Sciences, 10 (1), 7-12.
  • Pakdaman B.S., Mohammadi Goltapeh E., Sepehrifar R., Pouriesa M., Rahimi Fard M., Moradi F., Modarres S.A.M., 2007b. Cellular membranes as the sites for the antifungal activity of the herbicide sethoxydim. Pakistan Journal of Biological Sciences, 10 (15), 2480-2484.
  • Pakdaman B.S., Mohammadi Goltapeh E., Soltani B.M., Talebi A.A., Naderpoor M., Kruszewska J.S., Piłsyk S., Sarrocco S., Vannacci G., 2013. Toward the quantification of confrontation (dual culture) test: a case study on the biological control of Pythium aphanidermatum with Trichoderma asperelloides. Journal of Biofertilizers & Biopesticides, 4, 137. https://doi.org/10.4172/2155-6202.1000137.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2018a. Weeds, herbicides and plant disease management. In: Sustainable Agriculture Reviews 31 Biocontrol, Lichtfouse, E. (Ed.). Springer Cham, 41-178 p.
  • Pakdaman B.S., Mohammadi Goltapeh E., 2018b. Effect of agricultural chemicals and organic amendments on biological control fungi. In: Sustainable Agriculture Reviews 31 Biocontrol, Lichtfouse, E. (Ed.). Springer Cham, 217-359 p.
  • Pakdaman B.S., Mohammadi N., 2020. Creation of Trichoderman: from an idea to realization. Journal of Biotechnology and Bioresearch, 2 (3), JBB000540.2020
  • Pakdaman B.S., Elahifard E., 2025. Quantitative confrontation test: effect of Atlantis® OD 42 on Trichoderma asperelloides & Fusarium graminearum interaction: Scientia Agriculturae Bohemica,56 (3), 10, 1-13. https://doi.org/10.7160/sab.2025.560310
  • Papadopoulos J.S., Agarwala R., 2007. Cobalt: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23 (9), 1073-1079. doi: 10.1093/bioinformatics/btm076
  • Pascoe M.J., Maillard J.Y., 2021. The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Letters in Applied Microbiology, 72 (4), 375-381. doi: 10.1111/lam.13437
  • Podder D., Ghosh S.Kr., 2019. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Scientific Reports, 9 (1), 1108. https://doi.org/10.1038/s41598-018-37108-2
  • Sandmann G., 2022. Carotenoids and their biosynthesis in fungi. Molecules, 27 (4), 1431. https://doi.org/10.3390/molecules27041431
  • Shao S.N., Li B., Sun Q., Guo P.R., Du Y.J., Huang J.F., 2022. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microsclerotial and conidial formation and virulence in Verticillium dahliae. Fungal Genetics and Biology, 159, 103667. https://doi.org/10.1016/j.fgb.2022.103667
  • Sharvelle E.G., 1961. The nature and uses of modern fungicides. Burgers Publication Company, Minneapolis, 308 p.
  • Singh R.S., 2001. Plant disease management. Science Publishers, Enfield, USA, 238 p.
  • Singh P., Piotrowski M., Gau A.E., 2005. Purification and partial characterization of an extracellular melanoprotein from the fungus Venturia inaequalis. Zeitschrift für die Naturforschung. C, Journal of Biosciences, 60 (1-2), 109-115. doi: 10.1515/znc-2005-1-220
  • Singkaravanit S., Kinoshita H., Ihara F., Nihira T., 2009. Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi. Applied Microbiology and Biotechnology, 85 (5), 1463-1472. doi: 10.1007/s00253-009-2171-9
  • Tseng M.N., Chung P.C., Tzean S.S., 2011. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Applied and Environmental Microbiology, 77 (13), 4508-4519. doi: 10.1128/AEM.02033-10
  • Zain Ul Arifeen M., Ma Z.J., Wu S., Liu J.Z., Xue Y.R., 2021. Effect of oxygen concentrations and branched-chain amino acids on the growth and development of sub-seafloor fungus, Schizophyllum commune 20R-7-F01. Applied and Environmental Microbiology, 23 (11), 6940-6952. https://doi.org/10.1128/aem.01279-24
  • Zarrin M., Rahdar M., Gholamian A., 2015. Biological control of the nematode infective larvae of Trichostrongylidae family with filamentous fungi. Jundishapur Journal of Microbiology, 8 (3), e17614. https://doi.org/10.5812/jjm.17614
There are 45 citations in total.

Details

Primary Language English
Subjects Pesticides and Toxicology
Journal Section Research Article
Authors

Babak Pakdaman Sardrood 0000-0002-7099-101X

Elham Elahifard This is me 0000-0002-8982-9602

Siamak Khoshnavania This is me 0009-0001-1702-846X

Submission Date July 6, 2024
Acceptance Date June 12, 2025
Publication Date January 1, 2026
Published in Issue Year 2025 Volume: 65 Issue: 4

Cite

APA Pakdaman Sardrood, B., Elahifard, E., & Khoshnavania, S. (2026). How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD. Plant Protection Bulletin, 65(4), 111-120. https://doi.org/10.16955/bitkorb.1510563
AMA Pakdaman Sardrood B, Elahifard E, Khoshnavania S. How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD. Plant Protection Bulletin. January 2026;65(4):111-120. doi:10.16955/bitkorb.1510563
Chicago Pakdaman Sardrood, Babak, Elham Elahifard, and Siamak Khoshnavania. “How an Herbicide Can Affect Plant Diseases in a Crop Rotation Program? A Case Study on Othello® OD”. Plant Protection Bulletin 65, no. 4 (January 2026): 111-20. https://doi.org/10.16955/bitkorb.1510563.
EndNote Pakdaman Sardrood B, Elahifard E, Khoshnavania S (January 1, 2026) How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD. Plant Protection Bulletin 65 4 111–120.
IEEE B. Pakdaman Sardrood, E. Elahifard, and S. Khoshnavania, “How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD”, Plant Protection Bulletin, vol. 65, no. 4, pp. 111–120, 2026, doi: 10.16955/bitkorb.1510563.
ISNAD Pakdaman Sardrood, Babak et al. “How an Herbicide Can Affect Plant Diseases in a Crop Rotation Program? A Case Study on Othello® OD”. Plant Protection Bulletin 65/4 (January2026), 111-120. https://doi.org/10.16955/bitkorb.1510563.
JAMA Pakdaman Sardrood B, Elahifard E, Khoshnavania S. How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD. Plant Protection Bulletin. 2026;65:111–120.
MLA Pakdaman Sardrood, Babak et al. “How an Herbicide Can Affect Plant Diseases in a Crop Rotation Program? A Case Study on Othello® OD”. Plant Protection Bulletin, vol. 65, no. 4, 2026, pp. 111-20, doi:10.16955/bitkorb.1510563.
Vancouver Pakdaman Sardrood B, Elahifard E, Khoshnavania S. How an herbicide can affect plant diseases in a crop rotation program? A case study on Othello® OD. Plant Protection Bulletin. 2026;65(4):111-20.

136481365013649589c73e2330bd.jpg