Research Article
BibTex RIS Cite

‘Superior seedless’ üzüm çeşidinde sürgün ucu büyüklüğünün in vitro rejenerasyon ve virüs eliminasyonu üzerine etkileri

Year 2021, , 5 - 9, 30.09.2021
https://doi.org/10.16955/bitkorb.877123

Abstract

Bağcılıkta, hücre içi patojenlerin neden olduğu en önemli hastalık etmeni virüslerdir. Bulaşık bitkiler zayıf gelişim, uyanmanın gecikmesi, verim ve kalitede azalma gibi belirtiler gösterebilir hatta birkaç yıl içerisinde ölebilir. Bitkileri virüslerden arındırmak için bazı yöntemler mevcuttur. Termoterapiyle birlikte uygulanan sürgün ucu kültürü en yaygın yöntemdir. Yöntemin başarısı eksplantın büyüklüğüne bağlıdır yani, eksplant ne kadar küçük olursa o kadar fazla virüsten ari bitki elde edilebilir. Öte yandan küçük eksplantların rejenerasyon kapasiteleri düşüktür. Bu çalışmada, ‘Superior Seedless’ üzüm çeşidinde eksplant büyüklüğü ile virüs eliminasyonu arasındaki bağlantı incelenmiştir. Bitkiler termoterapi ve in vitro kültür öncesinde, Double Antibody Sandwich-Enzyme-Linked Immunosorbent Assay (DAS-ELISA) ve Real-time Reverse Transcription-Polymerase Chain Reaction (Real time RT-PCR) teknikleri ile test edilmiş ve farklı virüsler (Grapevine leafroll associated virus -1, -3, Grapevine leafroll associated virus -4 strains, Grapevine rupestris stem pitting associated virus) ile bulaşık oldukları doğrulanmıştır. Farklı büyüklükte (0.1-0.5-1-5-10 mm) sürgün ucu eksplantları, 1 mgl-1 BA içeren MS ortamında kültüre alınmıştır. Küçük boyutlu eksplantlarda virüs bulaşıklığı az olmuş ya da hiç saptanmamıştır.

References

  • Aazami M.A., 2010. Effect of some growth regulators on in vitro culture of two Vitis vinifera L. cultivars. Romanian Biotechnological Letters 15, 5229-5232.
  • Chee R., Pool R.M., Bucher D., 1984. A method for large scale in vitro propagation of Vitis. New York’s Food and Life Sciences Bulletin 109, 1-9.
  • Clark M.F., Adams A.N., 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34, 475-483.
  • Digiaro M., Martelli G.P., Savino V., 1999. Phloem-limited viruses of the grapevine in the Mediterranean and Near East: a synopsis. In: Martelli G.P. (ed.), Digiaro M. (ed.) Proceedings of the Mediterranean network on grapevine Closteroviruses 1992-1997 and the viruses and virus-like diseases of the grapevine a bibliographic report, 1985-1997 Bari : CIHEAM Options Méditerranéennes : Série B. Etudes et Recherches; n. 29 1999: 83-92.
  • Gray D.J., Benton C.M., 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tissue and Organ Culture 27, 7-14.
  • Gray D.J., Fisher L.C., 1985. In vitro shoot propagation of grape species, hybrids and cultivars. Proceedings of Florida State Horticultural Society 98, 172-174.
  • Gray D.J, Klein C.M., 1987. In vitro shoot micropropagation and plant establishment of 'Orlando Seedless' grape and 'Tampa' rootstock. Proceedings of Florida State Horticultural Society 100, 308- 309.
  • Gribaudo I., Gambino G., Cuozzo D., Mannini F., 2006. Attempts to eliminate Grapevine rupestris stem pitting-associated virus from grapevine clones. Journal of Plant Pathology 88, 293-298.
  • Hancevic, K., Zdunic, G., Voncina, D., Radic, T., 2015. Virus composition influences virus elimination success and in vitro growth characteristics of the grapevine cv. Plavac mali. Journal of Plant Pathology 97, 199-202.
  • Infante, R., Fione, N., 2009. Combined effect of thermotherapy and in vitro shoot culture on the Grapevine leafroll associated virus 2 Red Globe strain affecting 'Red Globe' vines. Journal of Food, Agriculture & Environment 7, 274-277.
  • Laslo, V., Zăpârţan, M., Vicaş, S., 2010. In vitro responses of several cultivars of Vitis vinifera L. on media with balanced phytohormone ratio. Research Journal of Agricultural Science 42, 269-274.
  • Maliogka, V.I., Skiada F.G., Eleftheriou E.P., Katis N.I., 2009. Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Scientia Horticulturae 123, 280-282.
  • Mink G.I., Wample R., Howell W.E., 1998. Heat treatment of perennial plants to eliminate phytoplasmas, viruses and viroids while maintaining plant survival. In: Plant Virus Disease Control (Hadidi et al. eds.), APS Press, St Paul, USA 1998: 332-345.
  • Morel G., Martin C., 1952. Guerison de dahlias atteints d’une maladie a virus. Comptes Rendus de L’Academie des Sciences 235, 1324-1325.
  • Osman, F., Rowhani, A., 2006. Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). Journal of Virology Methods 133, 130–136.
  • Önder S., Erilmez S., Paylan I.C., Ceyhan M., 2016. Grapevine rupestris stem pitting-associated virus (GRSPaV)’ün UPL probu ile real-time rt-pcr sistemiyle tanılanmasında dejenere primer tasarımı ve sertifikasyon analizlerinde kullanımı, Uluslararası Katılımlı Türkiye VI. Bitki Koruma Kongresi s: 564, 5-8 Eylül 2016, Konya, Türkiye.
  • Peros, J.P., Torregrosa L., Berger G., 1998. Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. Journal of Experimental Botany 49, 171–179.
  • Roubelakis-Angelakis K.A., Zivanovitc, S.B., 1991. A new culture medium for in vitro rhizogenesis of grapevine (Vitis spp.) genotypes. Hortscience 26, 1551-1553.
  • Salami S. A., Ebadi A., Zamani Z., Habibi M. K., 2009. Incidence of Grapevine fanleaf virus in Iran: a survey study and production of virus-free material using meristem culture and thermotherapy. European Journal of Horticultural Science 74, 42–46.
  • Skiada F.G., Grigoriadou K., Maliogka V.I., Katis N.I., Eleftheriou E.P., 2009. Elimination of Grapevine leafroll-associated virus 1 and Grapevine rupestris stem pitting-associated virus from grapevine cv. Agiorgitiko and a micropropagation protocol for mass production of virus-free plantlets. Journal of Plant Pathology 91, 177-184.
  • Torregrosa L., Bouquet A., 1996. Adventitious bud formation and shoot development from in vitro leaves of Vitis x Muscadinia hybrids. Plant Cell Tissue and Organ Culture 45, 245-252.
  • Ulaş S., Önder S., Yıldız N., 2017. Bornova misketi klonlarında meristem rejenerasyonlarının ve virüsten arındırma başarısının incelenmesi. Türkiye 9. Bağcılık ve Teknolojileri Sempozyumu, 11-14 Eylül 2017, Ankara, Türkiye.
  • Youssef S.A., Al-Dhaher M.M.A., Shalaby A.A., 2009. Elimination of Grapevine fanleaf virus (GFLV) and Grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. International Journal of Virology 5, 89-99.

Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless

Year 2021, , 5 - 9, 30.09.2021
https://doi.org/10.16955/bitkorb.877123

Abstract

In this study, we investigate the relation between the explant size and the success of virus elimination in ‘Superior Seedless’ grape variety. Plants were tested by prior to thermotherapy and in vitro culture by using Double Antibody Sandwich-Enzyme-Linked Immunosorbent Assay (DAS-ELISA) and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and verified as infected by different viruses (Grapevine leafroll associated virus -1+3, Grapevine leafroll associated virus -4 Strains, Grapevine rupestris stem pitting associated virus). Different size of shoot tip explants (0.1-0.5-1-5-10 mm) were excised and cultured on MS medium supplemented with 1 mgl-1 BA. All of the explants bigger than 0.1 mm 100% regenerated while 70% of the 0.1 mm explants showed complete regeneration and turned into a whole plant. Plants regenerated from 10 mm shoot tip explants have all three viruses (GLRaV-1+3, GLRaV-4 strains and GRSPaV) as founded in mother plant. Plants regenerated from 5 mm explants have two of them (GLRaV-1+3, GLRaV-4 strains) and plants regenerated from 1 mm explants have one (GLRaV-1+3). Plants regenerated from 0.1 mm explants were found completely virus-free.

References

  • Aazami M.A., 2010. Effect of some growth regulators on in vitro culture of two Vitis vinifera L. cultivars. Romanian Biotechnological Letters 15, 5229-5232.
  • Chee R., Pool R.M., Bucher D., 1984. A method for large scale in vitro propagation of Vitis. New York’s Food and Life Sciences Bulletin 109, 1-9.
  • Clark M.F., Adams A.N., 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology 34, 475-483.
  • Digiaro M., Martelli G.P., Savino V., 1999. Phloem-limited viruses of the grapevine in the Mediterranean and Near East: a synopsis. In: Martelli G.P. (ed.), Digiaro M. (ed.) Proceedings of the Mediterranean network on grapevine Closteroviruses 1992-1997 and the viruses and virus-like diseases of the grapevine a bibliographic report, 1985-1997 Bari : CIHEAM Options Méditerranéennes : Série B. Etudes et Recherches; n. 29 1999: 83-92.
  • Gray D.J., Benton C.M., 1991. In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell Tissue and Organ Culture 27, 7-14.
  • Gray D.J., Fisher L.C., 1985. In vitro shoot propagation of grape species, hybrids and cultivars. Proceedings of Florida State Horticultural Society 98, 172-174.
  • Gray D.J, Klein C.M., 1987. In vitro shoot micropropagation and plant establishment of 'Orlando Seedless' grape and 'Tampa' rootstock. Proceedings of Florida State Horticultural Society 100, 308- 309.
  • Gribaudo I., Gambino G., Cuozzo D., Mannini F., 2006. Attempts to eliminate Grapevine rupestris stem pitting-associated virus from grapevine clones. Journal of Plant Pathology 88, 293-298.
  • Hancevic, K., Zdunic, G., Voncina, D., Radic, T., 2015. Virus composition influences virus elimination success and in vitro growth characteristics of the grapevine cv. Plavac mali. Journal of Plant Pathology 97, 199-202.
  • Infante, R., Fione, N., 2009. Combined effect of thermotherapy and in vitro shoot culture on the Grapevine leafroll associated virus 2 Red Globe strain affecting 'Red Globe' vines. Journal of Food, Agriculture & Environment 7, 274-277.
  • Laslo, V., Zăpârţan, M., Vicaş, S., 2010. In vitro responses of several cultivars of Vitis vinifera L. on media with balanced phytohormone ratio. Research Journal of Agricultural Science 42, 269-274.
  • Maliogka, V.I., Skiada F.G., Eleftheriou E.P., Katis N.I., 2009. Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Scientia Horticulturae 123, 280-282.
  • Mink G.I., Wample R., Howell W.E., 1998. Heat treatment of perennial plants to eliminate phytoplasmas, viruses and viroids while maintaining plant survival. In: Plant Virus Disease Control (Hadidi et al. eds.), APS Press, St Paul, USA 1998: 332-345.
  • Morel G., Martin C., 1952. Guerison de dahlias atteints d’une maladie a virus. Comptes Rendus de L’Academie des Sciences 235, 1324-1325.
  • Osman, F., Rowhani, A., 2006. Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). Journal of Virology Methods 133, 130–136.
  • Önder S., Erilmez S., Paylan I.C., Ceyhan M., 2016. Grapevine rupestris stem pitting-associated virus (GRSPaV)’ün UPL probu ile real-time rt-pcr sistemiyle tanılanmasında dejenere primer tasarımı ve sertifikasyon analizlerinde kullanımı, Uluslararası Katılımlı Türkiye VI. Bitki Koruma Kongresi s: 564, 5-8 Eylül 2016, Konya, Türkiye.
  • Peros, J.P., Torregrosa L., Berger G., 1998. Variability among Vitis vinifera cultivars in micropropagation, organogenesis and antibiotic sensitivity. Journal of Experimental Botany 49, 171–179.
  • Roubelakis-Angelakis K.A., Zivanovitc, S.B., 1991. A new culture medium for in vitro rhizogenesis of grapevine (Vitis spp.) genotypes. Hortscience 26, 1551-1553.
  • Salami S. A., Ebadi A., Zamani Z., Habibi M. K., 2009. Incidence of Grapevine fanleaf virus in Iran: a survey study and production of virus-free material using meristem culture and thermotherapy. European Journal of Horticultural Science 74, 42–46.
  • Skiada F.G., Grigoriadou K., Maliogka V.I., Katis N.I., Eleftheriou E.P., 2009. Elimination of Grapevine leafroll-associated virus 1 and Grapevine rupestris stem pitting-associated virus from grapevine cv. Agiorgitiko and a micropropagation protocol for mass production of virus-free plantlets. Journal of Plant Pathology 91, 177-184.
  • Torregrosa L., Bouquet A., 1996. Adventitious bud formation and shoot development from in vitro leaves of Vitis x Muscadinia hybrids. Plant Cell Tissue and Organ Culture 45, 245-252.
  • Ulaş S., Önder S., Yıldız N., 2017. Bornova misketi klonlarında meristem rejenerasyonlarının ve virüsten arındırma başarısının incelenmesi. Türkiye 9. Bağcılık ve Teknolojileri Sempozyumu, 11-14 Eylül 2017, Ankara, Türkiye.
  • Youssef S.A., Al-Dhaher M.M.A., Shalaby A.A., 2009. Elimination of Grapevine fanleaf virus (GFLV) and Grapevine leaf roll-associated virus-1 (GLRaV-1) from infected grapevine plants using meristem tip culture. International Journal of Virology 5, 89-99.
There are 23 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Simin Saygaç 0000-0003-1740-4127

Serkan Önder

Publication Date September 30, 2021
Submission Date February 8, 2021
Acceptance Date June 30, 2021
Published in Issue Year 2021

Cite

APA Saygaç, S., & Önder, S. (2021). Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless. Plant Protection Bulletin, 61(3), 5-9. https://doi.org/10.16955/bitkorb.877123
AMA Saygaç S, Önder S. Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless. Plant Protection Bulletin. September 2021;61(3):5-9. doi:10.16955/bitkorb.877123
Chicago Saygaç, Simin, and Serkan Önder. “Effects of Shoot Tip Size on in Vitro Regeneration and Virus Elimination of Grapevine Cv. Superior Seedless”. Plant Protection Bulletin 61, no. 3 (September 2021): 5-9. https://doi.org/10.16955/bitkorb.877123.
EndNote Saygaç S, Önder S (September 1, 2021) Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless. Plant Protection Bulletin 61 3 5–9.
IEEE S. Saygaç and S. Önder, “Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless”, Plant Protection Bulletin, vol. 61, no. 3, pp. 5–9, 2021, doi: 10.16955/bitkorb.877123.
ISNAD Saygaç, Simin - Önder, Serkan. “Effects of Shoot Tip Size on in Vitro Regeneration and Virus Elimination of Grapevine Cv. Superior Seedless”. Plant Protection Bulletin 61/3 (September 2021), 5-9. https://doi.org/10.16955/bitkorb.877123.
JAMA Saygaç S, Önder S. Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless. Plant Protection Bulletin. 2021;61:5–9.
MLA Saygaç, Simin and Serkan Önder. “Effects of Shoot Tip Size on in Vitro Regeneration and Virus Elimination of Grapevine Cv. Superior Seedless”. Plant Protection Bulletin, vol. 61, no. 3, 2021, pp. 5-9, doi:10.16955/bitkorb.877123.
Vancouver Saygaç S, Önder S. Effects of shoot tip size on in vitro regeneration and virus elimination of grapevine cv. superior seedless. Plant Protection Bulletin. 2021;61(3):5-9.

134351364813650136491344113445