BibTex RIS Cite

Effects of reduced doses of Trifluralin on the development of Redroot pigweed [<em>Amaranthus retroflexus</em> L. (Amaranthaceae)]

Year 2010, Volume: 50 Issue: 4, 213 - 221, 13.12.2010

Abstract

This study was conducted to determine the minimum dose of pre-emerging herbicide: trifluralin giving satisfactory control efficacy (>90%) on Redroot pigweed (Amaranthus retroflexus L.). Experiments were conducted in plastic pots kept in controlled greenhouses. 100, 80, 60, 40, 20 and 0 (control) % of the registered dose of trifluralin were tested. Plant heights, number of leaves and herbicide symptoms measured at 1st, 3rd, 5th, 7th, 14th, 21st and 28th days. At the 28th day plants were cut at soil surface, thus fresh and dry weights were determined. Dry weight data of the experiments were subjected to nonlinear regression analyses and the effective dose of tifluralin causing 90% reduction in dry weight (ED90) were estimated. Results indicated that 663.97 g a.i. ha-1 trifluralin gives 90% reduction in dry weight of A. retroflexus.

References

  • Anderson R. S. 1930. Reports of the standard gelatin committee (yayınlanmamıĢ).
  • Auskalnis A. and Kadzys A. 2006. Effect of timing and dosage in herbicide application on weed biomass in spring wheat. Agronomy Res. 4: 133-136.
  • Barros J. F. C. Basch G. and Carvalho M. 2007. Effect of reduced doses of a postemergence herbicide to control grass and broad-leaved weeds in no-till wheat under Mediterranean conditions. Crop Pro. 26: 1538-1545.
  • Cheema Z. A. Jaffer I. and Khaliq A. 2003. Reducing isoproturon dose in combination with sorgaab for weed control in wheat. Pak. J. Weed Sci. and Res. 9 (3&4): 153-160.
  • Dogan M. N. and Hurle K. 1997. Influence of growth stage and some environmental factors after application on the effectiviness of the reduced doses of nicosulfuron on Amaranthus retroflexus L. Türkiye II. Bitki Koruma Kongresi, 1-4 Eylül 1997, Ġzmir, Türkiye, ss. 99-106.
  • Gönen O. 1999. Determination of Germination Biology and Morphologic Characteristic to use Practical Identification with Computer of Summer Growing Weed Species in Çukurova Region of Turkey. Doktora Tezi, Çukurova Üniversitesi, Adana, Türkiye (YayınlanmamıĢ Doktora tezi).
  • Kudsk P. and Streibig J. C. 2003. Herbicides – a two-edged sword. Weed Res. 43: 90-102.
  • Medd R. W. Van De Ven R. Pickering D. I. and Nordblom T. L. 2001. Determination of environment-specific dose response relationships for clodinafop-propargyl on Avena spp. Weed Res. 41: 351-368.
  • Monaco T. J. Weller S. C. and Ashton F. M. 2002. Weed Science: Principles ad Practices. Fourth Edition, John Wiley & Sons, inc., New York, USA, 671p.
  • Peterson D. E. Regehr D. L. Thompson C. R. and Al-Khatib K. 2001. Herbicide mode of action. Kansas State University, Agricultural Experiment Station and Cooperative Extension Service, 24p.
  • Pimentel D. Acquay H. Biltonen M. Rice P. Silva M. Nelson J. Lipner V. Giordano S. Horowitz A. and D‟amore M. 1992. Environmental and human costs of pesticide use. Bioscience 42: 750-760.
  • Rainbolt C. C. Thill D. C. and Ball D. A. 2001. Response of rotational crops to BAY MKH 6561. Weed Technol 15: 365-374.
  • Ritz C. and Streibig J. C. 2007. Statistical assessment of dose-response curves with free software: collection of examples. Course Notes of “Dose-Response Curves in Pesticide Science”, 20 December 2007, Samsun, Turkey, 33p.
  • Steckel L. E. Defelice M. S. and Sims B. D. 1990. Integrating reduced doses of post emergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Sci. 38: 541-545.
  • Streibig J. C. Rudermo M. and Jensen J. E. 1993. Dose–response curves and statistical models. In: JC Streibig & P Kudsk (Eds.), Herbicide Bioassays. CRC Press, Boca Raton, USA, pp. 30-55.
  • Thakral K. K. Pandita M. L. Khurana S. C. and Kalloo G. 1989. Effect of time of weed removal on growth and yield of potato. Weed Res 29: 33-38.
  • Uygur F. N. 1991. Herbolojide AraĢtırma Yöntemleri (Ders notları). Çukurova Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü, Adana, Turkey.
  • Vitta J. I. Faccini D. E. and Nisensohn L. A. 2000. Control of Amaranthus quitensis in soybean crops in Argentina: An Alternative to Reduce Herbicide Use. Crop Prot 19: 511-513.
  • Walker S. R. Medd R.W. Robinson G.R. and Cullis B. R. 2002. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res 42: 257-270.
  • Zhang J. Weaver S. E. and Hamill A. S. 2000. Risks and reliability of using herbicides at below-labelled rates. Weed Technol. 14: 106-115.
  • Zoschke A. 1994. Toward Reduced Herbicide Rates and Adapted Weed Management. Weed Technology 8, 376-386.

Trifluralin’in azaltılmış dozlarının Kırmızı köklü tilki kuyruğu [Amaranthus retroflexus L. (Amaranthaceae)]’nun gelişimine etkisi

Year 2010, Volume: 50 Issue: 4, 213 - 221, 13.12.2010

Abstract

Bu çalışma, ekim öncesi kullanılan bir herbisit olan trifluralin'in, Kırmızı köklü tilki kuyruğu (Amaranthus retroflexus L.)'nun mücadelesinde >%90 başarı sağlayan minimum dozunu belirlemek amacı ile gerçekleştirilmiştir. Sera koşullarında, saksılarda yapılan araştırmalarda trifluralin'in önerilen dozunun dışında, %80, %60, %40, %20 ve %0 (kontrol) oranındaki azaltılmış dozları uygulanmıştır. Denemelerin kurulmasını takip eden 1, 3, 5, 7, 14, 21 ve 28'inci günlerde bitki boyları, yaprak sayıları ve bitkide görülen herbisit simptomları kaydedilmiştir. Denemeler 28'inci günde sonlandırılmış, bitkiler hasat edilerek yaş ve kuru ağırlıkları belirlenmiştir. Çalışmalar sonucunda elde edilen bitki kuru ağırlıkları kullanılarak doz-tepki eğrileri çizilmiş ve bu eğriler yardımı ile A. retroflexus'un mücadelesinde %90 (ED90) oranında başarı sağlayan herbisit dozu belirlenmiştir. Yapılan çalışmalar sonucunda, A. retroflexus'un ekim öncesi mücadelesinde 663.97 g e.m. ha-1 trifluralin'in %90 oranında kontrol sağlayacağı belirlenmiştir.

References

  • Anderson R. S. 1930. Reports of the standard gelatin committee (yayınlanmamıĢ).
  • Auskalnis A. and Kadzys A. 2006. Effect of timing and dosage in herbicide application on weed biomass in spring wheat. Agronomy Res. 4: 133-136.
  • Barros J. F. C. Basch G. and Carvalho M. 2007. Effect of reduced doses of a postemergence herbicide to control grass and broad-leaved weeds in no-till wheat under Mediterranean conditions. Crop Pro. 26: 1538-1545.
  • Cheema Z. A. Jaffer I. and Khaliq A. 2003. Reducing isoproturon dose in combination with sorgaab for weed control in wheat. Pak. J. Weed Sci. and Res. 9 (3&4): 153-160.
  • Dogan M. N. and Hurle K. 1997. Influence of growth stage and some environmental factors after application on the effectiviness of the reduced doses of nicosulfuron on Amaranthus retroflexus L. Türkiye II. Bitki Koruma Kongresi, 1-4 Eylül 1997, Ġzmir, Türkiye, ss. 99-106.
  • Gönen O. 1999. Determination of Germination Biology and Morphologic Characteristic to use Practical Identification with Computer of Summer Growing Weed Species in Çukurova Region of Turkey. Doktora Tezi, Çukurova Üniversitesi, Adana, Türkiye (YayınlanmamıĢ Doktora tezi).
  • Kudsk P. and Streibig J. C. 2003. Herbicides – a two-edged sword. Weed Res. 43: 90-102.
  • Medd R. W. Van De Ven R. Pickering D. I. and Nordblom T. L. 2001. Determination of environment-specific dose response relationships for clodinafop-propargyl on Avena spp. Weed Res. 41: 351-368.
  • Monaco T. J. Weller S. C. and Ashton F. M. 2002. Weed Science: Principles ad Practices. Fourth Edition, John Wiley & Sons, inc., New York, USA, 671p.
  • Peterson D. E. Regehr D. L. Thompson C. R. and Al-Khatib K. 2001. Herbicide mode of action. Kansas State University, Agricultural Experiment Station and Cooperative Extension Service, 24p.
  • Pimentel D. Acquay H. Biltonen M. Rice P. Silva M. Nelson J. Lipner V. Giordano S. Horowitz A. and D‟amore M. 1992. Environmental and human costs of pesticide use. Bioscience 42: 750-760.
  • Rainbolt C. C. Thill D. C. and Ball D. A. 2001. Response of rotational crops to BAY MKH 6561. Weed Technol 15: 365-374.
  • Ritz C. and Streibig J. C. 2007. Statistical assessment of dose-response curves with free software: collection of examples. Course Notes of “Dose-Response Curves in Pesticide Science”, 20 December 2007, Samsun, Turkey, 33p.
  • Steckel L. E. Defelice M. S. and Sims B. D. 1990. Integrating reduced doses of post emergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Sci. 38: 541-545.
  • Streibig J. C. Rudermo M. and Jensen J. E. 1993. Dose–response curves and statistical models. In: JC Streibig & P Kudsk (Eds.), Herbicide Bioassays. CRC Press, Boca Raton, USA, pp. 30-55.
  • Thakral K. K. Pandita M. L. Khurana S. C. and Kalloo G. 1989. Effect of time of weed removal on growth and yield of potato. Weed Res 29: 33-38.
  • Uygur F. N. 1991. Herbolojide AraĢtırma Yöntemleri (Ders notları). Çukurova Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü, Adana, Turkey.
  • Vitta J. I. Faccini D. E. and Nisensohn L. A. 2000. Control of Amaranthus quitensis in soybean crops in Argentina: An Alternative to Reduce Herbicide Use. Crop Prot 19: 511-513.
  • Walker S. R. Medd R.W. Robinson G.R. and Cullis B. R. 2002. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res 42: 257-270.
  • Zhang J. Weaver S. E. and Hamill A. S. 2000. Risks and reliability of using herbicides at below-labelled rates. Weed Technol. 14: 106-115.
  • Zoschke A. 1994. Toward Reduced Herbicide Rates and Adapted Weed Management. Weed Technology 8, 376-386.
There are 21 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

İbrahim Kahramanoğlu

F. Uygur This is me

Publication Date December 13, 2010
Submission Date December 13, 2010
Published in Issue Year 2010 Volume: 50 Issue: 4

Cite

APA Kahramanoğlu, İ., & Uygur, F. (2010). Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]. Plant Protection Bulletin, 50(4), 213-221.
AMA Kahramanoğlu İ, Uygur F. Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]. Plant Protection Bulletin. December 2010;50(4):213-221.
Chicago Kahramanoğlu, İbrahim, and F. Uygur. “Effects of Reduced Doses of Trifluralin on the Development of Redroot Pigweed [Amaranthus retroflexus L. (Amaranthaceae)]”. Plant Protection Bulletin 50, no. 4 (December 2010): 213-21.
EndNote Kahramanoğlu İ, Uygur F (December 1, 2010) Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]. Plant Protection Bulletin 50 4 213–221.
IEEE İ. Kahramanoğlu and F. Uygur, “Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]”, Plant Protection Bulletin, vol. 50, no. 4, pp. 213–221, 2010.
ISNAD Kahramanoğlu, İbrahim - Uygur, F. “Effects of Reduced Doses of Trifluralin on the Development of Redroot Pigweed [Amaranthus retroflexus L. (Amaranthaceae)]”. Plant Protection Bulletin 50/4 (December 2010), 213-221.
JAMA Kahramanoğlu İ, Uygur F. Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]. Plant Protection Bulletin. 2010;50:213–221.
MLA Kahramanoğlu, İbrahim and F. Uygur. “Effects of Reduced Doses of Trifluralin on the Development of Redroot Pigweed [Amaranthus retroflexus L. (Amaranthaceae)]”. Plant Protection Bulletin, vol. 50, no. 4, 2010, pp. 213-21.
Vancouver Kahramanoğlu İ, Uygur F. Effects of reduced doses of Trifluralin on the development of Redroot pigweed [Amaranthus retroflexus L. (Amaranthaceae)]. Plant Protection Bulletin. 2010;50(4):213-21.

136481365013649