Research Article
BibTex RIS Cite

Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri

Year 2018, Volume: 58 Issue: 2, 111 - 121, 27.06.2018
https://doi.org/10.16955/bitkorb.415169

Abstract



Kök-ur nematodu Meloidogyne luci’nin dört farklı başlangıç popülasyon (Pi)
yoğunluğunun
(101,
102, 103 ve 104
 yumurta/bitki) hassas domates bitkisinin gelişimine ve
nematod üremesine etkisini belirlemek için saksı denemesi yürütülmüştür. Bitki
gelişimine ait kriterlerden, gövde boyu ve gövde çapına ait başlangıç değerleri
nematod inokulasyonundan hemen önce kaydedilmiştir. Ayrıca, yapraklardaki
klorofil içeriklerindeki değişimin belirlenebilmesi amacıyla nematod
inokulasyonundan deneme sonuna kadar haftalık olarak ölçümler yapılmıştır.
Nematod inokulasyonundan 60 gün sonra deneme sonlandırılarak gövde boyu, gövde
ağırlığı, gövde çapı ve kök ağırlıkları belirlenmiştir. Köklerdeki urlanma
oranı 0-10 skalasına göre değerlendirilmiş ve nematodun final popülasyon (Pf)
yoğunlukları ile üreme faktörü (Rf) tespit edilmiştir. Pi yoğunluğundaki artış,
kök ağırlığı dışındaki bitki gelişim kriterlerinde azalışa neden olmuştur.
Gövde çapı artış oranı Pi seviyesi 101, gövde boyu artış oranı ile
gövde ağırlığı ise Pi yoğunluğu 103 olduğunda kontrolden (Pi=0) önemli
seviyede azalmıştır (P˂0,05). Nematod ile bulaşık bitkilerde, kontrole göre
başlangıçtan itibaren daha düşük bir klorofil içeriği tespit edilmiş olsa bile,
bu değişim istatistiksel olarak önemsizdir. Pi artıkça, ur skalası değerinde
istatiksel olarak önemli artışlar tespit edilmiştir (P<0,05). Benzer
şekilde, Pi yoğunluğundaki artış ile Pf değerinde de artışlar meydana gelmiş,
fakat Pi yoğunluğu
103 ve 104olan
uygulamalarda gram kökte elde edilen yumurta sayıları istatiksel olarak
birbirinden farksız bulunmuştur. En yüksek Rf değerleri düşük Pi
yoğunluklarında tespit edilmiş olup, istatistiksel olarak önemli azalış Pi
seviyesi 103’ün üzerine çıktığında gerçekleşmiştir. Nematod ile
bitki gelişimi arasındaki ilişkiyi ortaya koymak amacıyla yapılan regresyon
analizlerinde, gövde boyu ve gövde çapı artış miktarının kontrole göre yüzde
azalışı ile Pi seviyesi arasında pozitif bir ilişki tespit edilmiştir. Benzer bir
pozitif ilişki, ur skalası ile gövde boyu ve ağırlığının azalış oranları
arasında da belirlenmiştir. Sonuç olarak, bitki gelişim parametreleri, urlanma
oranı ve nematodun üremesi birlikte değerlendirildiğinde, Pi seviyesi 103 olduğunda,
domates gelişimde önemli gerileme olduğu saptanmıştır.




References

  • Abad P., Favery B., Rosso M. N., Castagnone-Sereno P., 2003. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4, 217‒224.
  • Ansari T., Asif M., Siddiqui M. A, 2018. Resistance screening of lentil cultivars against the root-knot nematode Meloidogyne incognita. Hellenic Plant Protection Journal, 11, 9-18.
  • Aydınlı G., Mennan S., Devran Z., Sirca S., Urek G., 2013. First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Disease, 97 (9), 1262.
  • Aydınlı G., Mennan S., 2016a. Identification of root-knot nematodes (Meloidogyne spp.) from greenhouses in the Middle Black Sea Region of Turkey. Turkish Journal of Zoology, 40 (5), 675-685.
  • Aydınlı G., Mennan S., 2016b. Reproductive ability of Meloidogyne ethiopica populations on tomato plant with Mi resistance gene. 32nd International Symposium of the European Society of Nematologists, 28th August-1st September 2016, Braga, Portugal, p: 159.
  • Azam, T., Hisamuddin S., Singh S., Robab M. I., 2011. Effect of different inoculum levels of Meloidogyne incognita on growth and yield of Lycopersicon esculentum, and internal structure of infected root. Archives of Phytopathology and Plant Protection, 44, 1829-1839.
  • Barker K. R., Olthof T. H. A., 1976. Relationships between nematode population densities and crop responses. Annual Review of Phytophatology, 14, 327-353.Belair G., Boivin G., 1988. Spatial pattern and sequential sampling plan for Meloidogyne hapla in muck-grown carrots. Phytopathology 78, 604-607.
  • Bird, D. M., 1996. Manipulation of host gene expression by root-knot nematodes. Journal of Parasitology, 82, 881-888.
  • Bridge J., Page S. L. J., 1980. Estimation of Root-Knot Nematodes Infestation Levels Using a Rating Chart. Tropical Pest Management, 26, 296-298.
  • Carneiro R. G., Mazzafera P., Ferraz L.C.C.B., 1999. Carbon partitioning in soybean infected with Meloidogyne incognita and M. javanica. Journal of Nematology, 31, 348-355.
  • Carneiro R. M. D. G., Correa V. R. M., Almeida R. A., Gomes A. C. M. M., Deimi A. M., Castagnone-Sereno P., Karssen G., 2014. Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran. Nematology, 16 (3), 289-301.
  • Conceição I. L., Tzortzakakis E. A., Gomes P., Abrantes I., da Cunha M. J., 2012. Detection of the root-knot nematode Meloidogyne ethiopica in Greece, European Journal of Plant Pathology, 134, 451-457.
  • Cortada L., Sorribas F. J., Ornat C., Kaloshian I., Verdejo-Lucas S., 2008. Variability in infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi resistance gene. Plant Pathology, 57, 1125-1135.
  • Devran Z., Söğüt M. A., Mutlu N., 2010. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures, Phytopathologia Mediterranea, 49, 11-17.
  • Di Vito M., Cianciotta V., Zaccheo G., 1991. The effect of population densities of Meloidogyne incognita on yield of susceptible and resistant tomato. Nematologia Mediterranea, 19, 265-268.
  • Ehwaeti M. E., Phillips M. S., Trudgill D. L., 1998. Dynamics of damage to tomato by Meloidogyne incognita. Fundamentals and Applied Nematology, 21, 627-635.
  • EPPO, 2016. Previous finding of Meloidogyne ethiopica in Slovenia is now attributed to Meloidogyne luci. Reporting Service No. 11-2016. https://gd.eppo.int/reporting/article-5957 (Erişim tarihi: 25 Aralık 2016).
  • FAO, 2018. Production quantity. http://www.fao.org/faostat (Erişim Tarihi: 2 Nisan 2018).
  • Fortnum B. A., Kasperbauer M. J., Hunt P. G., Bridges W. C., 1991. Biomass partitioning in tomato plants infected with Meloidogyne incognita. Journal of Nematology, 23, 291-297.
  • Gerič Stare B., Strajnar P., Susic N., Urek G., Širca S., 2017. Reported populations of Meloidogyne ethiopica in Europe identified as Meloidogyne luci. Plant Disease, 101 (9), 1627-1632.
  • Gine A., Lopez-Gomez M., Vela, M. D., Ornat C., Talavera M., Verdejo-Lucas S., Sorribas F. J., 2014. Thermal requirements and population dynamics of rootknot nematodes on cucumber and yield losses under protected cultivation. Plant Pathology, 63, 1446-1453.
  • Greco N., Di Vito M., 2009. Population dynamics and damage levels. In: Root-knot nematodes. Perry, R. N., Moens, M., Starr, J. L. (Eds). CABI Publishing, Wallingford, UK, 246-274 p.
  • Hussey R. S., Barker K. R., 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 57, 1025-1028.
  • Janssen T., Karssen G., Verhaeven M., Coyne D., Bert W., 2016. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports, 6: 22591.
  • Kamran M., Anwar S. A., Javed N., Khan S. A., Abbas H., Iqbal M. A., Zohaib A., 2013. The influence of Meloidogyne incognita density on susceptible tomato. Pakistan Journal of Zoology, 45(3), 727-732.
  • Kankam F., Adomako J., 2014. Influence of inoculum levels of root-knot nematodes (Meloidogyne spp.) on tomato (Solanum lycopersicum L.). Asian Journal of Agriculture and Food Science, 2, 171-178.
  • Kayani M. Z., Mukhtar T., Hussain M. A., 2017. Effects of southern root-knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Protection, 92, 207-212.
  • Korayem A. M., Bondok Moawad M. M. M., 2013. Damage threshold of root-knot nematode, Meloidogyne arenaria on peanut in relation to date of planting and irrigation system. Canadian Journal of Plant Protection, 1, 117-124.
  • López-Gómez M., Flor-Peregrín E., Talavera M., Sorribas F. J., Verdejo-Lucas S., 2015. Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Protection, 70: 8-14
  • López-Gómez M., Verdejo-Lucas S., 2017. Penetration and post-infection development of root-knot nematodes in watermelon. Spanish Journal of Agricultural Research, 15 (4), e1010.
  • Loveys, B. R., Bird A. F., 1973. The influence of nematodes on photosynthesis in tomato plants. Physiological Plant Pathology, 3, 525-529.Maleita C. M., Simões M. J., Egas C., Curtis R. H. C., Abrantes I. M., de O., 2012a. Biometrical, biochemical, and molecular diagnosis of Portuguese Meloidogyne hispanica isolates, Plant Disease, 96 (6), 865-874.
  • Maleita C. M. N., Curtis R. H. C., Powers S. J., Abrantes I. M. de O., 2012b. Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes. Phytopathologia Mediterranea, 51 (3), 566-576.
  • Maleita C., Esteves I., Cardoso J. M. S., Cunha M. J., Carneiro R. M. D. G., Abrantes I., 2018. Meloidogyne luci, a new root-knot nematode parasitizing potato in Portugal. Plant Pathology, 67 (2), 366-376.
  • McClure, M. A., 1977. Meloidogyne incognita: a metabolic sink. Journal of Nematology, 9, 88-90.
  • Melakeberhan H., Webster J. M., Brooke R. C., 1985. Response of Phaseolus vulgaris to a single generation of Meloidogyne incognita. Nematologica, 31, 190-202.
  • Moens M., Perry R. N., Starr J. L., 2009. Meloidogyne species- a diverse group of novel and important plant parasites. In: Root-knot nematodes. Perry R. N., Moens M., Starr J.L. (Eds). CABI Publishing, Wallingford, UK, 1-17 p.
  • Mukhtar T., Kayani M. Z., Hussain M. A., 2013. Response of selected cucumber cultivars to Meloidogyne incognita. Crop Protection, 44, 33-17.
  • Seid A., Fininsa C., Mekete T., Decraemer W., Wesemael W. M. L., 2015. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) - a century-old battle. Nematology, 17(9), 995-1009.
  • Sirca S., Urek G., Karssen G., 2004. First report of the root-knot nematode Meloidogyne ethiopica on tomato in Slovenia, Plant Disease, 88, 680.
  • Wagner A., Michalek W., Jamiolkowska A., 2006. Chlorophyll fluorescence measurements as indicators of fusariosis severity in tomato plants. Agronomy Research, 4, 461-464.
  • Wesemael W. M. L., Viaene N., Moens M., 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3-16.
  • Zhang F., Noe J. P., 1996. Damage potential and reproduction of Meloidogyne incognita race 3 and M. arenaria race 1 on Kenaf. Supplement to Journal of Nematology, 28 (4S), 668-675.

Effects of Different Population Densities of Root-Knot Nematode Meloidogyne luci on Growth of Tomato and Nematode Reproduction

Year 2018, Volume: 58 Issue: 2, 111 - 121, 27.06.2018
https://doi.org/10.16955/bitkorb.415169

Abstract



The
pot experiment was conducted to determine the effects of four initial
population (Pi) densities
(101,
102, 103 and104 eggs/plant)
of
root-knot nematode Meloidogyne luci
on plant growth of susceptible tomato and nematode reproduction. Initial values
of shoot length and stem diameter as a plant growth criteria were determined
prior to nematode inoculation. Additionally, chlorophyll contents of leaf were weekly
recorded from nematode inoculation to end of the experiment to assess their
differences. The experiment was terminated sixty days after nematode
inoculation to determine shoot length, shoot weight, stem diameter, and root
weight. Galls of root were evaluated according to 0-10 scale, and nematode
final population (Pf) and reproduction factor (Rf) were determined. The increase
in Pi densities caused reduction of plant growth parameters except for root
weight. Significant reductions were found stem diameter at
101 of Pi and
shoot length and weight at 103 of Pi in comparison to control (Pi=0)
(P˂0.05).  a lower chlorophyll content
was determined during the experiment period in nematode-inoculated plants
compared to non-inoculated plants, but not significantly. Significant increases
in the value of gall scale were found with an increase in Pi (P˂0.05). Similarly,
Pf increased with an increase in Pi but egg numbers of gram root had no
significant differences between 103 and 104 at Pi. Maximum
Rf values were recorded at low Pi values but statistically significant reduction was determined at higher Pi level than
103. Regression
analyses were performed to detect the relationship between nematode and plant
growth resulting in a positive correlation between Pi levels and the percentage
decrease in shoot length and stem diameters in relation to the actual growth in
control.
Similar
positive relations were also determined between values of gall scale and
percentage reduction shoot length and weight over control.
In conclusion,
considerable reductions in the growth of tomato were at
103 of Pi when
plant growth parameters, galling rates, and nematode reproduction were
evaluated together.




References

  • Abad P., Favery B., Rosso M. N., Castagnone-Sereno P., 2003. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4, 217‒224.
  • Ansari T., Asif M., Siddiqui M. A, 2018. Resistance screening of lentil cultivars against the root-knot nematode Meloidogyne incognita. Hellenic Plant Protection Journal, 11, 9-18.
  • Aydınlı G., Mennan S., Devran Z., Sirca S., Urek G., 2013. First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Disease, 97 (9), 1262.
  • Aydınlı G., Mennan S., 2016a. Identification of root-knot nematodes (Meloidogyne spp.) from greenhouses in the Middle Black Sea Region of Turkey. Turkish Journal of Zoology, 40 (5), 675-685.
  • Aydınlı G., Mennan S., 2016b. Reproductive ability of Meloidogyne ethiopica populations on tomato plant with Mi resistance gene. 32nd International Symposium of the European Society of Nematologists, 28th August-1st September 2016, Braga, Portugal, p: 159.
  • Azam, T., Hisamuddin S., Singh S., Robab M. I., 2011. Effect of different inoculum levels of Meloidogyne incognita on growth and yield of Lycopersicon esculentum, and internal structure of infected root. Archives of Phytopathology and Plant Protection, 44, 1829-1839.
  • Barker K. R., Olthof T. H. A., 1976. Relationships between nematode population densities and crop responses. Annual Review of Phytophatology, 14, 327-353.Belair G., Boivin G., 1988. Spatial pattern and sequential sampling plan for Meloidogyne hapla in muck-grown carrots. Phytopathology 78, 604-607.
  • Bird, D. M., 1996. Manipulation of host gene expression by root-knot nematodes. Journal of Parasitology, 82, 881-888.
  • Bridge J., Page S. L. J., 1980. Estimation of Root-Knot Nematodes Infestation Levels Using a Rating Chart. Tropical Pest Management, 26, 296-298.
  • Carneiro R. G., Mazzafera P., Ferraz L.C.C.B., 1999. Carbon partitioning in soybean infected with Meloidogyne incognita and M. javanica. Journal of Nematology, 31, 348-355.
  • Carneiro R. M. D. G., Correa V. R. M., Almeida R. A., Gomes A. C. M. M., Deimi A. M., Castagnone-Sereno P., Karssen G., 2014. Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran. Nematology, 16 (3), 289-301.
  • Conceição I. L., Tzortzakakis E. A., Gomes P., Abrantes I., da Cunha M. J., 2012. Detection of the root-knot nematode Meloidogyne ethiopica in Greece, European Journal of Plant Pathology, 134, 451-457.
  • Cortada L., Sorribas F. J., Ornat C., Kaloshian I., Verdejo-Lucas S., 2008. Variability in infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi resistance gene. Plant Pathology, 57, 1125-1135.
  • Devran Z., Söğüt M. A., Mutlu N., 2010. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures, Phytopathologia Mediterranea, 49, 11-17.
  • Di Vito M., Cianciotta V., Zaccheo G., 1991. The effect of population densities of Meloidogyne incognita on yield of susceptible and resistant tomato. Nematologia Mediterranea, 19, 265-268.
  • Ehwaeti M. E., Phillips M. S., Trudgill D. L., 1998. Dynamics of damage to tomato by Meloidogyne incognita. Fundamentals and Applied Nematology, 21, 627-635.
  • EPPO, 2016. Previous finding of Meloidogyne ethiopica in Slovenia is now attributed to Meloidogyne luci. Reporting Service No. 11-2016. https://gd.eppo.int/reporting/article-5957 (Erişim tarihi: 25 Aralık 2016).
  • FAO, 2018. Production quantity. http://www.fao.org/faostat (Erişim Tarihi: 2 Nisan 2018).
  • Fortnum B. A., Kasperbauer M. J., Hunt P. G., Bridges W. C., 1991. Biomass partitioning in tomato plants infected with Meloidogyne incognita. Journal of Nematology, 23, 291-297.
  • Gerič Stare B., Strajnar P., Susic N., Urek G., Širca S., 2017. Reported populations of Meloidogyne ethiopica in Europe identified as Meloidogyne luci. Plant Disease, 101 (9), 1627-1632.
  • Gine A., Lopez-Gomez M., Vela, M. D., Ornat C., Talavera M., Verdejo-Lucas S., Sorribas F. J., 2014. Thermal requirements and population dynamics of rootknot nematodes on cucumber and yield losses under protected cultivation. Plant Pathology, 63, 1446-1453.
  • Greco N., Di Vito M., 2009. Population dynamics and damage levels. In: Root-knot nematodes. Perry, R. N., Moens, M., Starr, J. L. (Eds). CABI Publishing, Wallingford, UK, 246-274 p.
  • Hussey R. S., Barker K. R., 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter, 57, 1025-1028.
  • Janssen T., Karssen G., Verhaeven M., Coyne D., Bert W., 2016. Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports, 6: 22591.
  • Kamran M., Anwar S. A., Javed N., Khan S. A., Abbas H., Iqbal M. A., Zohaib A., 2013. The influence of Meloidogyne incognita density on susceptible tomato. Pakistan Journal of Zoology, 45(3), 727-732.
  • Kankam F., Adomako J., 2014. Influence of inoculum levels of root-knot nematodes (Meloidogyne spp.) on tomato (Solanum lycopersicum L.). Asian Journal of Agriculture and Food Science, 2, 171-178.
  • Kayani M. Z., Mukhtar T., Hussain M. A., 2017. Effects of southern root-knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Protection, 92, 207-212.
  • Korayem A. M., Bondok Moawad M. M. M., 2013. Damage threshold of root-knot nematode, Meloidogyne arenaria on peanut in relation to date of planting and irrigation system. Canadian Journal of Plant Protection, 1, 117-124.
  • López-Gómez M., Flor-Peregrín E., Talavera M., Sorribas F. J., Verdejo-Lucas S., 2015. Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Protection, 70: 8-14
  • López-Gómez M., Verdejo-Lucas S., 2017. Penetration and post-infection development of root-knot nematodes in watermelon. Spanish Journal of Agricultural Research, 15 (4), e1010.
  • Loveys, B. R., Bird A. F., 1973. The influence of nematodes on photosynthesis in tomato plants. Physiological Plant Pathology, 3, 525-529.Maleita C. M., Simões M. J., Egas C., Curtis R. H. C., Abrantes I. M., de O., 2012a. Biometrical, biochemical, and molecular diagnosis of Portuguese Meloidogyne hispanica isolates, Plant Disease, 96 (6), 865-874.
  • Maleita C. M. N., Curtis R. H. C., Powers S. J., Abrantes I. M. de O., 2012b. Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes. Phytopathologia Mediterranea, 51 (3), 566-576.
  • Maleita C., Esteves I., Cardoso J. M. S., Cunha M. J., Carneiro R. M. D. G., Abrantes I., 2018. Meloidogyne luci, a new root-knot nematode parasitizing potato in Portugal. Plant Pathology, 67 (2), 366-376.
  • McClure, M. A., 1977. Meloidogyne incognita: a metabolic sink. Journal of Nematology, 9, 88-90.
  • Melakeberhan H., Webster J. M., Brooke R. C., 1985. Response of Phaseolus vulgaris to a single generation of Meloidogyne incognita. Nematologica, 31, 190-202.
  • Moens M., Perry R. N., Starr J. L., 2009. Meloidogyne species- a diverse group of novel and important plant parasites. In: Root-knot nematodes. Perry R. N., Moens M., Starr J.L. (Eds). CABI Publishing, Wallingford, UK, 1-17 p.
  • Mukhtar T., Kayani M. Z., Hussain M. A., 2013. Response of selected cucumber cultivars to Meloidogyne incognita. Crop Protection, 44, 33-17.
  • Seid A., Fininsa C., Mekete T., Decraemer W., Wesemael W. M. L., 2015. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) - a century-old battle. Nematology, 17(9), 995-1009.
  • Sirca S., Urek G., Karssen G., 2004. First report of the root-knot nematode Meloidogyne ethiopica on tomato in Slovenia, Plant Disease, 88, 680.
  • Wagner A., Michalek W., Jamiolkowska A., 2006. Chlorophyll fluorescence measurements as indicators of fusariosis severity in tomato plants. Agronomy Research, 4, 461-464.
  • Wesemael W. M. L., Viaene N., Moens M., 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3-16.
  • Zhang F., Noe J. P., 1996. Damage potential and reproduction of Meloidogyne incognita race 3 and M. arenaria race 1 on Kenaf. Supplement to Journal of Nematology, 28 (4S), 668-675.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Gökhan Aydınlı

Cüneyt Civelek This is me

Publication Date June 27, 2018
Submission Date April 13, 2018
Acceptance Date June 26, 2018
Published in Issue Year 2018 Volume: 58 Issue: 2

Cite

APA Aydınlı, G., & Civelek, C. (2018). Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri. Plant Protection Bulletin, 58(2), 111-121. https://doi.org/10.16955/bitkorb.415169
AMA Aydınlı G, Civelek C. Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri. Plant Protection Bulletin. June 2018;58(2):111-121. doi:10.16955/bitkorb.415169
Chicago Aydınlı, Gökhan, and Cüneyt Civelek. “Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine Ve Nematod Üremesine Etkileri”. Plant Protection Bulletin 58, no. 2 (June 2018): 111-21. https://doi.org/10.16955/bitkorb.415169.
EndNote Aydınlı G, Civelek C (June 1, 2018) Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri. Plant Protection Bulletin 58 2 111–121.
IEEE G. Aydınlı and C. Civelek, “Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri”, Plant Protection Bulletin, vol. 58, no. 2, pp. 111–121, 2018, doi: 10.16955/bitkorb.415169.
ISNAD Aydınlı, Gökhan - Civelek, Cüneyt. “Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine Ve Nematod Üremesine Etkileri”. Plant Protection Bulletin 58/2 (June 2018), 111-121. https://doi.org/10.16955/bitkorb.415169.
JAMA Aydınlı G, Civelek C. Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri. Plant Protection Bulletin. 2018;58:111–121.
MLA Aydınlı, Gökhan and Cüneyt Civelek. “Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine Ve Nematod Üremesine Etkileri”. Plant Protection Bulletin, vol. 58, no. 2, 2018, pp. 111-2, doi:10.16955/bitkorb.415169.
Vancouver Aydınlı G, Civelek C. Kök-Ur Nematodu Meloidogyne luci’nin Farklı Populasyon Yoğunluklarının Domates Gelişimine ve Nematod Üremesine Etkileri. Plant Protection Bulletin. 2018;58(2):111-2.

136481365013649