Research Article
BibTex RIS Cite

Armut çeşitlerinin SSR markörlerine göre genetik çeşitliliğinin belirlenmesi ve Armut memeli pasına (Gymnosporangium fuscum) reaksiyonları

Year 2020, Volume: 60 Issue: 3, 15 - 24, 30.09.2020
https://doi.org/10.16955/bitkorb.597886

Abstract

Armut, Türkiye ve dünyanın farklı ekolojik koşullarında yaygın olarak yetiştirilen bir bitki türüdür. Armut yetiştiriciliği Türkiye'de uzun bir geçmişe sahiptir, ancak bu eşsiz genetik kaynakların tarımsal ekosistemdeki ve genetik erozyondaki değişimler nedeniyle nesli tükenme tehlikesi bulunmaktadır. Gymnosporangium fuscum'un neden olduğu armut memeli pas hastalığı, armut ağaçlarının önemli hastalıklarından biridir ve aynı zamanda ardıç ağaçlarında da bulunur (Juniperus oxycedrus L. ve J. excelsa Bieb). Ardıç popülasyonlarının yakınındaki bazı armut bahçelerinde ciddi ekonomik kayıplar görülmüştür. Bu çalışmada, Çöğür ve Quince A (QA) üzerine aşılanmış 25 armut çeşidinin genetik çeşitliliği 13 SSR primer kullanılarak belirlenmiştir ve bu armut çeşitlerinin armut memeli pası (Gymnosporangium fuscum)’na karşı reaksiyon seviyeleri incelenmiştir. 25 ticari açıdan önemli armut çeşidi iki ana grup içinde yakın ilişkili olarak ele alınmıştır. Bu SSR markörleri armut genetik çeşitliliğin tanımlanmasında faydalı ve güvenilir olarak kullanılabileceğini göstermiştir. Hastalık şiddeti oranlarına göre yıllar ve anaçlar arasındaki fark istatistiki yönden önemli bulunmuştur. Hastalık tüm armut çeşitlerinde görülmüş ve hiçbir armut çeşidi hastalığa karşı dayanıklı olarak değerlendirilmemiştir. QA anaçlı armut çeşitlerinde çöğür anacına göre hastalık şiddeti daha yüksek tespit edilmiştir.

References

  • Agrios GN., 2005. Plant Pathology (Fifth Edition). ISBNO-12-044565-4, California, USA: pp. 574-576.
  • Akçay M., Büyükyılmaz M., Burak M., 2009. Marmara Bölgesi için Ümitvar Armut çeşitleri - IV, Bahçe Derg. Cilt:38, Sayı:1, Sayfa:1‐10, Yalova.
  • Anonymous 1996. Procedures of Plant Protection Products Registration. Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara/Turkey
  • Anonymous 2008. Plant Protection Pesticides Technical Instructions, Vol.:4, Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara/Turkey. pp.9-12
  • Aranzana M., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Lezzoni A., 2003a. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theo Appl Gen, 106, 819-825.
  • Aranzana M.J., Carbó J., Arús P., 2003b. Using amplified fragment-length polymorphisms (AFLPs) to identify peach cultivars. J. Ame Soc Hort Sci, 128 (5), 672-677.
  • Aranzana M.J., Garcia‐Mas J., Carbo J., Arús P., 2002. Development and variability analysis of microsatellite markers in peach. Pl Bree, 121(1), 87-92.
  • Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y., 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Gen Res Crop Evol, 54, 959-971.
  • Barakat M.N., Al-Doss A.A., Elshafei A.A., Moustafa K.A., 2011. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci, 5, 104–110.
  • Bouhadida M., Casas A.M., Moreno M.A., Gogorcena Y., 2007. Molecular characterization of Miraflores peach variety and relatives using SSRs. Sci Hort, 111(2), 140-145.
  • Bostan S.Z., Acar Ş., 2012. Ünye’de (ORDU) Yetiştirilen yerel armut çeşitlerinin pomolojik özellikleri. Aka Zir Derg, 1(2), 97-106
  • Brini W., Mars M., Hormaza J.I., 2008. Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hort, 115, 337-341.
  • Cao Y.F., Liu F.Z., Gao Y., Jiang L.J., Wang K., Ma Z.Y., Zhang K.C., 2007. SSR analysis of genetic diversity of pear cultivars. Acta Hort Sin, 34, 305-310.
  • Cheng Z., Huang H., 2009. SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci Hort, 120(2), 188-193.
  • Dice L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26, 297-302.
  • Dirlewanger E., Cosson P., Howad W., Capdeville G., Bosselut N., Claverie M., Laigret F., 2004. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theo Appl Gen, 109, 827-838.
  • Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull, 19, 11-5.
  • Erfani J., Ebadi A., Abdollahi H., Fatahi R., 2012. Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Pl Mol Bio Rep, 30, 1065-1072.
  • Fan T.W., Cai D.Y., Li H.X., Wang F.L., Zhao C.Z., Teng Y.W., 2007. Simple sequence repeat (SSR) analysis for assessment of genetic variation and relationships in pear germplasm native to the middle area of Gansu province. J Fru Sci, 24, 268-275.
  • Fang D.Q., Roose M.L., 1997. Identification of closely related Citrus cultivars with inter simple sequence repeat markers. Theo Appl Gen, 95, 408–417.FAOSTAT (2017). Retrieved in January, 17, 2019 from http://faostat.fao.org
  • Fitzner S., Fischer M., 2005. Bewertung von Pyrus–arten auf Befall mit Birnengitterrost (Gymnosporangium sabinae Dicks.). Erwebs – Obstbau, 47, 37-39
  • Ghosh A.K., Lukens L.N., Hunter D.M., Strommer J.N., 2006. European and Asian pears: simple sequence repeat-polyacrilamide gel electrophoresisbased analysis of commercially important North American cultivars. Hort Sci, 41, 304-309.
  • Gianfranceschi L., Seglias N., Tarchini R., Komjanc M., Gessler C., 1998. Simple sequence repeats for the genetic analysis of apple. Theo Appl Gen, 96, 1069-1076.
  • Hokanson S.C., Lamboy W.F., Szewc-McFadden A.K., McFerson J.R., 2001. Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica, 118, 281-294.
  • Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F., McFerson J.R., 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica Borkh. core subset collection. Theor Appl Genet, 97, 671-683.
  • Howad W., Yamamoto T., Dirlewanger E., Testolin R., Cosson P., Cipriani G., Arús P., 2005. Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics, 171(3), 1305-1309.
  • Iketani H., Manabe T., Matsuta N., Akihama T., Hayashi T., 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Gen Res Crop Evol, 45, 533-539.
  • Ikinci A., Bolat İ., 2016. Comparison of yield, fruit quality and leaf nutrient content of some pear cultivars. Inter Mult Cong Eur, 2, 208-219.
  • Infante Espiñeira R., Martínez Gómez P., Predieri S., 2008. Quality oriented fruit breeding: Peach [Prunus persica (L.) Batsch]. J Food Agri Env, 6(2), 342-356.
  • Juhasova G., Praslieka J., 2002. Occurrence and harmful effects of Gymnosporangium sabinae (Dicks) winter in Slovak republic. Pl Prot Sci, 38, 89-93.
  • Kimura T., Iketani H., Kotobuki K., Matsuta N., Ban Y., Hayashi T., Yamamoto T., 2003. Genetic characterization of pear varieties revealed by chloroplast DNA sequences. J Hort Sci Biot, 78, 241-247.
  • Koller B., Lehmann A., Mcdermott J.M., Gessler C., 1993. Identification of apple cultivars using RAPD markers. Theo Appl Gen, 85, 901-904.
  • Kong H.J., Moon J.Y., Nam B.H., Kim Y.O., Kim W.J., Lee J.H., Kim K.K., Kim B.S., Yeo S.Y., Lee C.H., 2011. Molecular characterization of the autophagy-related gene Beclin-1 from the olive flounder (Paralichthys olivaceus). Fish Shel Imm, 31, 189-195.
  • Lāce B., Bankina B., 2013. Evaluation of European Pear Rust Severity Depending on Agro-Ecological Factors. Annual 19th International Scientific Conference Proceedings, Res for Rur Dev 1, 6-12.
  • Li T.H., Li Y.X., Li Z.C., Zhang H.L., Qi Y.W., Wang T., 2008. Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). J Int Pl Bio, 50(1), 102-110.
  • Lombard P.B., Westwood M.N., 1987. Pear rootstocks. In: Rom RC, Carlson RF(eds) Rootstocks for fruit crops. John Wiley and Sons, New York, USA, pp 145–183.
  • Monte-Corvo L., Cabrita L., Oliveira C., Leitão J., 2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Gen Res and Crp Evol, 47, 257-265.
  • Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.L., 1999. Molecular typing of Pyrus based on RAPD markers. Sci Hort, 79, 163-174.
  • Oliveira L.O., Venturini B.A., Rossi A.A.B., Hastenreiter S.S., 2010. Clonal diversity and conservation genetics of the medicinal plant Carapichea ipecacuanha (Rubiaceae). Gen Mol Bio, 33, 86-93.
  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingley S., Rafalski A., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 2, 225-238.
  • Prokopova B., 2011. The severity of European pear rust depending on pear cultivars. Scientific Works of the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry and Lithuanian University of Agriculture. Sod Ir Darž, 30(2), 43-50.
  • Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchel S.E., Kresorich S., Tiegle J., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theo Appl Gen, 95,163-173.
  • Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G.J., Ryder C.D., Abbott A.G. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theo Appl Gen, 101(3), 421-428.
  • Unterstenhöfer G., 1963. The Basic Principles of Crop Protection Orchard trials. Pflanzenschutz-Nachricten, Bayer. 1963/3. pp 155–156
  • Uzun A., Yeşiloğlu T., Polat İ., Aka-Kaçar Y., Gülşen O., Yıldırım B., Tuzcu Ö., Tepe S., Canan İ., Anıl Ş., 2011. Evaluation of genetic diversity in lemons and some of their relatives based on Srap and SSR Markers. Pl Mol Bio Rep, 29, 693-701.
  • Volk G.M., Richards C.M., Henk A.D., Reilley A.A., Bassil N.V., Postman J.D. 2006. Diversity of wild Pyrus communis based on microsatellite analyses. J Amer Soc Hort Sci, 131, 408-417.
  • Wu J., Wang Z., Shi Z., Zhang S., Ming R., Zhu S., Khan M.A., Tao S., Korban S.S., Wang H., 2013. The genome of pear (Pyrus bretschneideri Rehd.). Gen Res, 23, 396-408.
  • Wünsch A., Hormaza J.I., 2007. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hort, 113(1), 37-43.
  • Wünsch A., Carrera M., Hormaza J.I., 2006. Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Gen Res Crop Evol, 53(5), 925-932.
  • Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T., Matsuta N., 2001. SSRs isolated from apple can identify polymorphism and genetic diversity inpear. Theo Appl Gen, 102, 865-870.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002a. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theo Appl Gen, 106, 9-18.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002b. Simple sequence repeats for genetic analysis in pear. Euphytica, 124, 129-137.
  • Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta N., 2002c. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Eco Not, 2, 14-16.
  • Zhang D., Shu Q., Teng Y.W., Qiu M.H., Bao L., Hu H.J., 2007. Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars. Act Hort Sin. 34, 47-52.

Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum)

Year 2020, Volume: 60 Issue: 3, 15 - 24, 30.09.2020
https://doi.org/10.16955/bitkorb.597886

Abstract

Commonly grown in different ecological conditions of Turkey and the world, pear (Pyrus communis L.), as a plant species, has a long cultivation history in Turkey. However, its unique genetic resources are in danger of extinction due to changes in the agro-ecosystem and genetic erosion. In addition, pear rust caused by Gymnosporangium fuscum is one of the significant diseases of pear. Severe economic losses have been reported in some pear orchards near the extensive juniper populations. In the present study, the genetic diversity and sensitivity level to pear rust (Gymnosporangium fuscum) of 25 local and commercially important pear varieties grafted on seedling and Quince A (QA) was determined using 13 SSR primers. The selected verities were clustered into two major groups that were closely related. The SSR markers provided reliable genotyping and demonstrated their usefulness for identifying pear genetic diversity. The difference between years and rootstocks according to disease severity rates was found to be statistically significant. Although none of the pear varieties assessed in these experiments were resistant to rust, the disease severity of the pear varieties of QA rootstock was generally higher than that of the seedling varieties.

References

  • Agrios GN., 2005. Plant Pathology (Fifth Edition). ISBNO-12-044565-4, California, USA: pp. 574-576.
  • Akçay M., Büyükyılmaz M., Burak M., 2009. Marmara Bölgesi için Ümitvar Armut çeşitleri - IV, Bahçe Derg. Cilt:38, Sayı:1, Sayfa:1‐10, Yalova.
  • Anonymous 1996. Procedures of Plant Protection Products Registration. Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara/Turkey
  • Anonymous 2008. Plant Protection Pesticides Technical Instructions, Vol.:4, Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara/Turkey. pp.9-12
  • Aranzana M., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Lezzoni A., 2003a. A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theo Appl Gen, 106, 819-825.
  • Aranzana M.J., Carbó J., Arús P., 2003b. Using amplified fragment-length polymorphisms (AFLPs) to identify peach cultivars. J. Ame Soc Hort Sci, 128 (5), 672-677.
  • Aranzana M.J., Garcia‐Mas J., Carbo J., Arús P., 2002. Development and variability analysis of microsatellite markers in peach. Pl Bree, 121(1), 87-92.
  • Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y., 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Gen Res Crop Evol, 54, 959-971.
  • Barakat M.N., Al-Doss A.A., Elshafei A.A., Moustafa K.A., 2011. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci, 5, 104–110.
  • Bouhadida M., Casas A.M., Moreno M.A., Gogorcena Y., 2007. Molecular characterization of Miraflores peach variety and relatives using SSRs. Sci Hort, 111(2), 140-145.
  • Bostan S.Z., Acar Ş., 2012. Ünye’de (ORDU) Yetiştirilen yerel armut çeşitlerinin pomolojik özellikleri. Aka Zir Derg, 1(2), 97-106
  • Brini W., Mars M., Hormaza J.I., 2008. Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hort, 115, 337-341.
  • Cao Y.F., Liu F.Z., Gao Y., Jiang L.J., Wang K., Ma Z.Y., Zhang K.C., 2007. SSR analysis of genetic diversity of pear cultivars. Acta Hort Sin, 34, 305-310.
  • Cheng Z., Huang H., 2009. SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci Hort, 120(2), 188-193.
  • Dice L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26, 297-302.
  • Dirlewanger E., Cosson P., Howad W., Capdeville G., Bosselut N., Claverie M., Laigret F., 2004. Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theo Appl Gen, 109, 827-838.
  • Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull, 19, 11-5.
  • Erfani J., Ebadi A., Abdollahi H., Fatahi R., 2012. Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Pl Mol Bio Rep, 30, 1065-1072.
  • Fan T.W., Cai D.Y., Li H.X., Wang F.L., Zhao C.Z., Teng Y.W., 2007. Simple sequence repeat (SSR) analysis for assessment of genetic variation and relationships in pear germplasm native to the middle area of Gansu province. J Fru Sci, 24, 268-275.
  • Fang D.Q., Roose M.L., 1997. Identification of closely related Citrus cultivars with inter simple sequence repeat markers. Theo Appl Gen, 95, 408–417.FAOSTAT (2017). Retrieved in January, 17, 2019 from http://faostat.fao.org
  • Fitzner S., Fischer M., 2005. Bewertung von Pyrus–arten auf Befall mit Birnengitterrost (Gymnosporangium sabinae Dicks.). Erwebs – Obstbau, 47, 37-39
  • Ghosh A.K., Lukens L.N., Hunter D.M., Strommer J.N., 2006. European and Asian pears: simple sequence repeat-polyacrilamide gel electrophoresisbased analysis of commercially important North American cultivars. Hort Sci, 41, 304-309.
  • Gianfranceschi L., Seglias N., Tarchini R., Komjanc M., Gessler C., 1998. Simple sequence repeats for the genetic analysis of apple. Theo Appl Gen, 96, 1069-1076.
  • Hokanson S.C., Lamboy W.F., Szewc-McFadden A.K., McFerson J.R., 2001. Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica, 118, 281-294.
  • Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F., McFerson J.R., 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica Borkh. core subset collection. Theor Appl Genet, 97, 671-683.
  • Howad W., Yamamoto T., Dirlewanger E., Testolin R., Cosson P., Cipriani G., Arús P., 2005. Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics, 171(3), 1305-1309.
  • Iketani H., Manabe T., Matsuta N., Akihama T., Hayashi T., 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Gen Res Crop Evol, 45, 533-539.
  • Ikinci A., Bolat İ., 2016. Comparison of yield, fruit quality and leaf nutrient content of some pear cultivars. Inter Mult Cong Eur, 2, 208-219.
  • Infante Espiñeira R., Martínez Gómez P., Predieri S., 2008. Quality oriented fruit breeding: Peach [Prunus persica (L.) Batsch]. J Food Agri Env, 6(2), 342-356.
  • Juhasova G., Praslieka J., 2002. Occurrence and harmful effects of Gymnosporangium sabinae (Dicks) winter in Slovak republic. Pl Prot Sci, 38, 89-93.
  • Kimura T., Iketani H., Kotobuki K., Matsuta N., Ban Y., Hayashi T., Yamamoto T., 2003. Genetic characterization of pear varieties revealed by chloroplast DNA sequences. J Hort Sci Biot, 78, 241-247.
  • Koller B., Lehmann A., Mcdermott J.M., Gessler C., 1993. Identification of apple cultivars using RAPD markers. Theo Appl Gen, 85, 901-904.
  • Kong H.J., Moon J.Y., Nam B.H., Kim Y.O., Kim W.J., Lee J.H., Kim K.K., Kim B.S., Yeo S.Y., Lee C.H., 2011. Molecular characterization of the autophagy-related gene Beclin-1 from the olive flounder (Paralichthys olivaceus). Fish Shel Imm, 31, 189-195.
  • Lāce B., Bankina B., 2013. Evaluation of European Pear Rust Severity Depending on Agro-Ecological Factors. Annual 19th International Scientific Conference Proceedings, Res for Rur Dev 1, 6-12.
  • Li T.H., Li Y.X., Li Z.C., Zhang H.L., Qi Y.W., Wang T., 2008. Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). J Int Pl Bio, 50(1), 102-110.
  • Lombard P.B., Westwood M.N., 1987. Pear rootstocks. In: Rom RC, Carlson RF(eds) Rootstocks for fruit crops. John Wiley and Sons, New York, USA, pp 145–183.
  • Monte-Corvo L., Cabrita L., Oliveira C., Leitão J., 2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Gen Res and Crp Evol, 47, 257-265.
  • Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.L., 1999. Molecular typing of Pyrus based on RAPD markers. Sci Hort, 79, 163-174.
  • Oliveira L.O., Venturini B.A., Rossi A.A.B., Hastenreiter S.S., 2010. Clonal diversity and conservation genetics of the medicinal plant Carapichea ipecacuanha (Rubiaceae). Gen Mol Bio, 33, 86-93.
  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingley S., Rafalski A., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 2, 225-238.
  • Prokopova B., 2011. The severity of European pear rust depending on pear cultivars. Scientific Works of the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry and Lithuanian University of Agriculture. Sod Ir Darž, 30(2), 43-50.
  • Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchel S.E., Kresorich S., Tiegle J., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theo Appl Gen, 95,163-173.
  • Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G.J., Ryder C.D., Abbott A.G. 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theo Appl Gen, 101(3), 421-428.
  • Unterstenhöfer G., 1963. The Basic Principles of Crop Protection Orchard trials. Pflanzenschutz-Nachricten, Bayer. 1963/3. pp 155–156
  • Uzun A., Yeşiloğlu T., Polat İ., Aka-Kaçar Y., Gülşen O., Yıldırım B., Tuzcu Ö., Tepe S., Canan İ., Anıl Ş., 2011. Evaluation of genetic diversity in lemons and some of their relatives based on Srap and SSR Markers. Pl Mol Bio Rep, 29, 693-701.
  • Volk G.M., Richards C.M., Henk A.D., Reilley A.A., Bassil N.V., Postman J.D. 2006. Diversity of wild Pyrus communis based on microsatellite analyses. J Amer Soc Hort Sci, 131, 408-417.
  • Wu J., Wang Z., Shi Z., Zhang S., Ming R., Zhu S., Khan M.A., Tao S., Korban S.S., Wang H., 2013. The genome of pear (Pyrus bretschneideri Rehd.). Gen Res, 23, 396-408.
  • Wünsch A., Hormaza J.I., 2007. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hort, 113(1), 37-43.
  • Wünsch A., Carrera M., Hormaza J.I., 2006. Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Gen Res Crop Evol, 53(5), 925-932.
  • Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T., Matsuta N., 2001. SSRs isolated from apple can identify polymorphism and genetic diversity inpear. Theo Appl Gen, 102, 865-870.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002a. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theo Appl Gen, 106, 9-18.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002b. Simple sequence repeats for genetic analysis in pear. Euphytica, 124, 129-137.
  • Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta N., 2002c. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Eco Not, 2, 14-16.
  • Zhang D., Shu Q., Teng Y.W., Qiu M.H., Bao L., Hu H.J., 2007. Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars. Act Hort Sin. 34, 47-52.
There are 54 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Suat Kaymak 0000-0003-2773-1076

Hasan Pinar

Publication Date September 30, 2020
Submission Date July 29, 2019
Acceptance Date January 8, 2020
Published in Issue Year 2020 Volume: 60 Issue: 3

Cite

APA Kaymak, S., & Pinar, H. (2020). Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum). Plant Protection Bulletin, 60(3), 15-24. https://doi.org/10.16955/bitkorb.597886
AMA Kaymak S, Pinar H. Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum). Plant Protection Bulletin. September 2020;60(3):15-24. doi:10.16955/bitkorb.597886
Chicago Kaymak, Suat, and Hasan Pinar. “Genetic Diversity of Pear Cultivars Using SSR Markers and Their Reactions to Pear Rust (Gymnosporangium Fuscum)”. Plant Protection Bulletin 60, no. 3 (September 2020): 15-24. https://doi.org/10.16955/bitkorb.597886.
EndNote Kaymak S, Pinar H (September 1, 2020) Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum). Plant Protection Bulletin 60 3 15–24.
IEEE S. Kaymak and H. Pinar, “Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum)”, Plant Protection Bulletin, vol. 60, no. 3, pp. 15–24, 2020, doi: 10.16955/bitkorb.597886.
ISNAD Kaymak, Suat - Pinar, Hasan. “Genetic Diversity of Pear Cultivars Using SSR Markers and Their Reactions to Pear Rust (Gymnosporangium Fuscum)”. Plant Protection Bulletin 60/3 (September 2020), 15-24. https://doi.org/10.16955/bitkorb.597886.
JAMA Kaymak S, Pinar H. Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum). Plant Protection Bulletin. 2020;60:15–24.
MLA Kaymak, Suat and Hasan Pinar. “Genetic Diversity of Pear Cultivars Using SSR Markers and Their Reactions to Pear Rust (Gymnosporangium Fuscum)”. Plant Protection Bulletin, vol. 60, no. 3, 2020, pp. 15-24, doi:10.16955/bitkorb.597886.
Vancouver Kaymak S, Pinar H. Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum). Plant Protection Bulletin. 2020;60(3):15-24.

136481365013649