Research Article
BibTex RIS Cite

Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey

Year 2021, Volume: 61 Issue: 4, 13 - 18, 31.12.2021
https://doi.org/10.16955/bitkorb.987832

Abstract

Tetranychus urticae Koch (Acari: Tetranychidae) is a devastating agricultural pest that can feed on more than 1000 host plants. This extremely polyphagous nature of this pest may allow random disperse of them. Although population movement and structure are of vital importance to design area-wide pest control programs, there is no such study focusing on this issue in Turkey. The present study showed that there was no genetic subdivision among T. urticae the populations collected from four geographic regions of Turkey (FST=0.090, p>0.05), based on cytochrome c oxidase subunit I (COI). In addition, the haplotype network supported these results since no clustering pattern was present. However, Black Sea populations had high genetic differentiation with other populations. This might be due to its isolated geography, different climate conditions, and limited sampling area. A high level of gene-flow between the Mediterranean and Aegean/Central Anatolian populations was determined. It is known that geography alone is not enough to explain population structure and genetic variation when excluding other ecological factors. Therefore, other factors such as current and historical climate data should be integrated to assess gene-flow in future studies.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Attia, S., Grissa, K.L., Lognay, G., Bitume, E., Hance, T., Mailleux, A.C., 2013. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. Journal of Pest Science, 86(3), 361-386. https://doi.org/10.1007/s10340-013-0503-0
  • Beals, M., Gross, L., Harrell, S., 2000. Populatıon Genetics: Limits To Adaptation. Website: http://www.tiem.utk.edu/~gross/bioed/bealsmodules/population_genetics.html
  • Bebber, D.P., Holmes, T., Gurr, S.J., 2014. The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. https://doi.org/10.1111/geb.12214
  • Hussey, N.W., Parr, W.J., 1963. Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae). Entomologia experimentalis et applicata, 6(3), 207-214. https://doi.org/10.1111/j.1570-7458.1963.tb00619.x
  • Iyigun, C., Türkeş, M., Batmaz, İ., Yozgatligil, C., Purutçuoğlu, V., Koç, E.K., Öztürk, M.Z., 2013. Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and applied climatology, 114(1), 95-106. https://doi.org/10.1007/s00704-012-0823-7
  • Jin, P.Y., Sun, J.T., Chen, L., Xue, X.F., Hong, X.Y., 2020. Geography alone cannot explain Tetranychus truncatus (Acari: Tetranychidae) population abundance and genetic diversity in the context of the center–periphery hypothesis. Heredity, 124(2), 383-396. https://doi.org/10.1038/s41437-019-0280-5
  • Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4), 1160-1166. https://doi.org/10.1093/bib/bbx108
  • Kennedy, G.G., Smitley, D.R., 1985. Dispersal. In Spider mites. Their biology, natural enemies and control, Vol. 1A, W. Helle, and M.W. Sabelis (eds), pp. 233–242. Elsevier, Amsterdam
  • Leigh, J.W., Bryant, D. 2015., POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410
  • Mazzi, D., Dorn, S., 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160(2), 97-113. https://doi.org/10.1111/j.1744-7348.2012.00533.x
  • Meirmans, P.G., 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60(11), 2399-2402. https://doi.org/10.1111/j.0014-3820.2006.tb01874.x
  • Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R., Mapangou-Divassa, S., 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology, 18(6), 351-360. https://doi.org/10.1007/BF00116316
  • Osakabe, M.H., Isobe, H., Kasai, A., Masuda, R., Kubota, S., Umeda, M., 2008. Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Experimental and Applied Acarology, 44(3), 165-183. https://doi.org/10.1007/s10493-008-9141-2
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., Sánchez-Gracia, A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
  • Stinner, R.E., Barfield, C.S., Stimac, J.L., Dohse, L., 1983. Dispersal and movement of insect pests. Annual review of entomology, 28(1), 319-335. https://doi.org/10.1146/annurev.en.28.010183.001535
  • Tsagkarakou A., Navajas M., Rousset F., Pasteur N., 1999. Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. In: Bruin J., van der Geest L.P.S., Sabelis M.W. (eds) Ecology and Evolution of the Acari. Series Entomologica, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1343-6_12
  • Tsagkarakou, A., Navajas, M., Papaioannou‐Souliotis, P., Pasteur, N., 1998. Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Molecular Ecology, 7(1), 71-79. https://doi.org/10.1046/j.1365-294x.1998.00305.x
  • Uesugi, R., Sasawaki, T. Osakabe, M., 2009 Evidence of a high level of gene flow among apple trees in Tetranychus urticae . Experimental and Applied Acarology 49, 281.https://doi.org/10.1007/s10493-009-9267-x
  • Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Tirry, L., 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In Biorational control of arthropod pests (pp. 347-393). Springer, Dordrecht.
  • Whitlock, M.C., Mccauley, D.E., 1999. Indirect measures of gene flow and migration: FST≠ 1/(4Nm+1). Heredity, 82(2), 117-125. https://doi.org/10.1046/j.1365-2540.1999.00496.x
  • Wright, S., 1965. The interpretation of population structure by F- statistics with special regard to systems of mating. Evolution, 19:395–420. https://doi.org/10.2307/2406450
  • Wright, S., 1978. Evolution and the Genetics of Populations, v. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago, 590 pp

Türkiye’nin farklı coğrafi bölgelerinden toplanan Tetranychus urticae popülasyonlarındaki gen akışı ve popülasyon yapıları

Year 2021, Volume: 61 Issue: 4, 13 - 18, 31.12.2021
https://doi.org/10.16955/bitkorb.987832

Abstract

Tetranychus urticae Koch (Acari: Tetranychidae) 1000’den fazla konukçu bitkiden beslenebilen tahrip edici bir tarımsal zararlıdır. Bu aşırı polifag doğası, bu zararlının rastgele dağılmasına olanak sağlayabilmektedir. Popülasyon hareketi ve yapısı geniş alanlarda zararlı kontrolü programları dizayn edilmesinde çok önemli olmasına rağmen, Türkiye’de bu konuda gerçekleştirilmiş bir çalışma bulunmamaktadır. Bu çalışmada, farklı coğrafik bölgelerden toplanan T. urticae popülasyonları arasında sitokrom oksidaz c altünite I (COI) genine dayanarak genetik alt bölünme olmadığını göstermektedir (FST=0.090, p>0.05). Ayrıca, haplotip network ağ analizinde kümelenme yapısı olmaması bu sonucu desteklemektedir. Ancak, Karadeniz popülasyonlarının diğer popülasyonlar ile yüksek genetik farklılığa sahip olduğu gösterilmiştir. Bu durum, bölgenin sahip olduğu izole coğrafyasından, farklı iklim koşullarından ve örnekleme yapılan alanın sınırlı olmasından dolayı olabilir. Akdeniz Bölgesi popülasyonları ile Ege ve İç Anadolu Bölgesi popülasyonları arasında yüksek gen akışı belirlenmiştir. Coğrafyanın tek başına popülasyon yapısı ve genetik varyasyonu açıklamada yeterli olmadığı bilinmektedir. Bu nedenle, güncel ve tarihsel iklim verileri gibi diğer faktörler ileri gen akışı çalışmalarında birleştirilmelidir.

Project Number

-

References

  • Attia, S., Grissa, K.L., Lognay, G., Bitume, E., Hance, T., Mailleux, A.C., 2013. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. Journal of Pest Science, 86(3), 361-386. https://doi.org/10.1007/s10340-013-0503-0
  • Beals, M., Gross, L., Harrell, S., 2000. Populatıon Genetics: Limits To Adaptation. Website: http://www.tiem.utk.edu/~gross/bioed/bealsmodules/population_genetics.html
  • Bebber, D.P., Holmes, T., Gurr, S.J., 2014. The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398-1407. https://doi.org/10.1111/geb.12214
  • Hussey, N.W., Parr, W.J., 1963. Dispersal of the glasshouse red spider mite Tetranychus urticae Koch (Acarina, Tetranychidae). Entomologia experimentalis et applicata, 6(3), 207-214. https://doi.org/10.1111/j.1570-7458.1963.tb00619.x
  • Iyigun, C., Türkeş, M., Batmaz, İ., Yozgatligil, C., Purutçuoğlu, V., Koç, E.K., Öztürk, M.Z., 2013. Clustering current climate regions of Turkey by using a multivariate statistical method. Theoretical and applied climatology, 114(1), 95-106. https://doi.org/10.1007/s00704-012-0823-7
  • Jin, P.Y., Sun, J.T., Chen, L., Xue, X.F., Hong, X.Y., 2020. Geography alone cannot explain Tetranychus truncatus (Acari: Tetranychidae) population abundance and genetic diversity in the context of the center–periphery hypothesis. Heredity, 124(2), 383-396. https://doi.org/10.1038/s41437-019-0280-5
  • Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics, 20(4), 1160-1166. https://doi.org/10.1093/bib/bbx108
  • Kennedy, G.G., Smitley, D.R., 1985. Dispersal. In Spider mites. Their biology, natural enemies and control, Vol. 1A, W. Helle, and M.W. Sabelis (eds), pp. 233–242. Elsevier, Amsterdam
  • Leigh, J.W., Bryant, D. 2015., POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410
  • Mazzi, D., Dorn, S., 2012. Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160(2), 97-113. https://doi.org/10.1111/j.1744-7348.2012.00533.x
  • Meirmans, P.G., 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60(11), 2399-2402. https://doi.org/10.1111/j.0014-3820.2006.tb01874.x
  • Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R., Mapangou-Divassa, S., 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental and Applied Acarology, 18(6), 351-360. https://doi.org/10.1007/BF00116316
  • Osakabe, M.H., Isobe, H., Kasai, A., Masuda, R., Kubota, S., Umeda, M., 2008. Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Experimental and Applied Acarology, 44(3), 165-183. https://doi.org/10.1007/s10493-008-9141-2
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., Sánchez-Gracia, A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
  • Stinner, R.E., Barfield, C.S., Stimac, J.L., Dohse, L., 1983. Dispersal and movement of insect pests. Annual review of entomology, 28(1), 319-335. https://doi.org/10.1146/annurev.en.28.010183.001535
  • Tsagkarakou A., Navajas M., Rousset F., Pasteur N., 1999. Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. In: Bruin J., van der Geest L.P.S., Sabelis M.W. (eds) Ecology and Evolution of the Acari. Series Entomologica, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1343-6_12
  • Tsagkarakou, A., Navajas, M., Papaioannou‐Souliotis, P., Pasteur, N., 1998. Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Molecular Ecology, 7(1), 71-79. https://doi.org/10.1046/j.1365-294x.1998.00305.x
  • Uesugi, R., Sasawaki, T. Osakabe, M., 2009 Evidence of a high level of gene flow among apple trees in Tetranychus urticae . Experimental and Applied Acarology 49, 281.https://doi.org/10.1007/s10493-009-9267-x
  • Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Tirry, L., 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In Biorational control of arthropod pests (pp. 347-393). Springer, Dordrecht.
  • Whitlock, M.C., Mccauley, D.E., 1999. Indirect measures of gene flow and migration: FST≠ 1/(4Nm+1). Heredity, 82(2), 117-125. https://doi.org/10.1046/j.1365-2540.1999.00496.x
  • Wright, S., 1965. The interpretation of population structure by F- statistics with special regard to systems of mating. Evolution, 19:395–420. https://doi.org/10.2307/2406450
  • Wright, S., 1978. Evolution and the Genetics of Populations, v. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago, 590 pp
There are 22 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Emre İnak 0000-0003-0411-4198

Project Number -
Publication Date December 31, 2021
Submission Date August 27, 2021
Acceptance Date December 10, 2021
Published in Issue Year 2021 Volume: 61 Issue: 4

Cite

APA İnak, E. (2021). Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey. Plant Protection Bulletin, 61(4), 13-18. https://doi.org/10.16955/bitkorb.987832
AMA İnak E. Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey. Plant Protection Bulletin. December 2021;61(4):13-18. doi:10.16955/bitkorb.987832
Chicago İnak, Emre. “Population Structure and Gene-Flow Among Tetranychus Urticae Populations Collected from Different Geographic Regions of Turkey”. Plant Protection Bulletin 61, no. 4 (December 2021): 13-18. https://doi.org/10.16955/bitkorb.987832.
EndNote İnak E (December 1, 2021) Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey. Plant Protection Bulletin 61 4 13–18.
IEEE E. İnak, “Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey”, Plant Protection Bulletin, vol. 61, no. 4, pp. 13–18, 2021, doi: 10.16955/bitkorb.987832.
ISNAD İnak, Emre. “Population Structure and Gene-Flow Among Tetranychus Urticae Populations Collected from Different Geographic Regions of Turkey”. Plant Protection Bulletin 61/4 (December 2021), 13-18. https://doi.org/10.16955/bitkorb.987832.
JAMA İnak E. Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey. Plant Protection Bulletin. 2021;61:13–18.
MLA İnak, Emre. “Population Structure and Gene-Flow Among Tetranychus Urticae Populations Collected from Different Geographic Regions of Turkey”. Plant Protection Bulletin, vol. 61, no. 4, 2021, pp. 13-18, doi:10.16955/bitkorb.987832.
Vancouver İnak E. Population structure and gene-flow among Tetranychus urticae populations collected from different geographic regions of Turkey. Plant Protection Bulletin. 2021;61(4):13-8.

136481365013649