Research Article
BibTex RIS Cite

Türk ekmeklik buğday germplazmında Pm41 gen frekansının değerlendirilmesi

Year 2024, Volume: 64 Issue: 4, 50 - 59
https://doi.org/10.16955/bitkorb.1555981

Abstract

Blumeria graminis f. sp. tritici'nin neden olduğu külleme hastalığı, dünya çapında buğday üretimi için yüksek risk taşır ve ciddi verim düşüşlerine neden olmaktadır. Direnç ıslahı, Pm41 geninin tüm aşamalarda direnç sağlamada önemli rol oynamasıyla bu hastalığın yönetimi için sürdürülebilir bir yaklaşım sağlamaktadır. Bu araştırmada, Pm41 geni için çeşitli Türk araştırma kurumlarından 96 Türk ekmeklik buğday (Triticum aestivum) çeşidi incelenmiştir. PCR analizi, incelenen çeşitlerin %57'sinin Pm41 genine sahip olduğunu göstermiştir. En yüksek tespit oranı %89 ile Bahri Dağdaş Uluslararası Tarımsal Araştırma Enstitüsü Müdürlüğü/Konya'dan alınan çeşitlerde kaydedilirken, Tarla Bitkileri Araştırma Enstitüsü Müdürlüğü/Ankara'da %29 ile daha düşük bir frekans görülmüstür. Veriler, Pm41 varlığında bölgesel farklılıklar olduğunu göstermektedir. Çeşitlerin yarısından fazlasında gözlemlenen Pm41 geni, Türk buğday çeşitlerinin direnç için önemli olabilecek gen varyantlarına sahip olduğunu düşündürmektedir. Bu çalışma, sürdürülebilir buğday yetiştiriciliği ve gıda güvenliği için olmazsa olmaz olan direnç genlerinin yeni varyantlarını bulmak için genetik materyallerin korunmasının önemini vurgulamaktadır.

References

  • Arslan M.S., Oğuz A.Ç., Karakaya A., 2024. Edirne ilinde buğday ve arpa bitkilerinde görülen yaprak hastalıkları. Journal of Agricultural Faculty of Bursa Uludag University, 38 (1), 13-26.
  • Aydın N., Demir B., Güleç T., Şermet C., Bayramoğlu H.O., Sayaslan A., Mut Z., 2021. Ekmeklik buğdayda geliştirilen rekombinant kendilenmiş hat populasyonunda kalite özellikleri için fenotipik ve genotipik değişim. Anadolu Tarım Bilimleri Dergisi, 36 (3), 418-432.
  • Baloch F.S., Ali A., Tajibayev D., Nadeem M.A., Ölmez F., Aktaş H., Alsaleh A., Cömertpay G., Imren M., Mustafa Z., Dababat A.A., Yang, S.H., 2024. Stripe rust resistance gene Yr15 in Turkish and Kazakhstan wheat germplasms and the potential of Turkish wild emmer for stripe rust breeding. Genetic Resources and Crop Evolution, 71 (6), 2699-2719.
  • Cao A., Xing L., Wang X., Yang X., Wang W., Sun Y., Qian C., Ni J., Chen Y., Liu D., Wang X., Chen, P., 2011. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences, 108 (19), 7727-7732.
  • Cavalet-Giorsa E., González-Muñoz A., Athiyannan N., Holden S., Salhi A., Gardener C., Quiroz-Chávez J., Rustamova S.M., Elkot A.F., Patpour M., Rasheed A., Mao L., Lagudah E.S., Sambasivam K., Periyannan S.K., Sharon A., Himmelbach A., Reif J.C., Knauft M., Mascher M., Stein N., Chayut N., Ghosh S., Perovic D., Putra A., Perera A.B., Hu C., Yu G., Ahmed H.I., Laquai K.D., Rivera L.F., Chen R., Wang Y., Gao X., Liu S., Raupp W.J., Olson E.L., Lee J., Chhuneja P., Kaur S., Zhang P., Park R.F., Ding Y., Liu D., Li W., Nasyrova F.Y., Dvorak J., Abbasi M., Li M., Kumar N., Wilku B., Meyer W.B., Boshoff W.H.P., Steffenson B.J., Matny O., Sharma P.K., Tiwari V.K., Grewal S., Pozniak C.J., Chawla H.S., Ens J., Dunning L.T., Kolmer J.A., Lazo G.R., Xu S.S., Gu Y.Q, Xu X., Uauy C., Abrouk M., Bougouffa S., Brar G.S., Brande B.H., Wulff B.B.H., Krattinger S.G., 2024. Origin and evolution of the bread wheat D genome. Nature, 633 (8031), 848-855.
  • Chai Y., Senay S., Horvath D., Pardey P., 2022. Multi-peril pathogen risks to global wheat production: A probabilistic loss and investment assessment. Frontiers in Plant Science, 13, 1034600. Chen X., Wang Y., Han G., Fan J., Tan Q., Liu G., Zhang H., Wang Y., 2024. Identification and transfer of a new powdery mildew resistance gene pmcahm from landrace changanhongmai into common wheat. Agronomy, 14 (4), 667.
  • Cheng H., Liu J., Wen J., Nie X., Xu L., Chen N., Li Z., Wang Q., Zheng Z., Li M., Cui L., Liu Z., Bian J., Wang Z., Xu S., Yang Q., Appels R., Han D., Song W., Sun Q., Jiang Y., 2019. Frequent intra-and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome biology, 20, 1-16.
  • Cheng B., Ding Y.Q., Gao X., Cao N., Xin Z.H., Zhang L.Y., 2020. The diversity of powdery mildew resistance gene loci among wheat germplasm in Southwest China. Cereal Research Communications, 48 (1), 65-70.
  • Cheng P., Guo M., Hao X., Guo X., Yao Q., Guo Q., Li Q., Wang B., 2022. Evaluation of powdery mildew resistance and molecular detection of resistance genes in an international wheat collection. Crop Protection, 160, 106033. Doyle J., 1991. DNA protocols for plants. In ‘Molecular techniques in taxonomy. Vol. 57. NATO ASI Series H: cell biology. Hewitt G.M., Johnston A.W., Young J.P.W., ((Eds. pp. 283–293.
  • Ilker E., Tonk F.A., Tosun M., Altinbas M., Kuçukakça M., 2009. Inheritance and combining ability in some powdery mildew resistant wheat lines. Crop Breeding and Applied Biotechnology, 9, 124-131. Laroche A., Frick M., Graf R.J., Larsen J., Laurie J.D., 2019. Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada. The Crop Journal, 7 (6), 739-749.
  • Li G., Fang T., Zhan H., Xie C., Li H., Yang T., Nevo E., Fashima., Sun Q., Liu Z., 2009. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119, 531-539.
  • Li G., Xu X., Bai G., Carver B.F., Hunger R., Bonman J.M., 2016. Identification of novel powdery mildew resistance sources in wheat. Crop Science, 56 (4), 1817-1830.
  • Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., Li Y., Shi W., Yang L., Wu Q., Chen Y., Lu P., Guo G., Zhang H., Zhang P., Zhu K, Li Y., Zhang Y., Wang R., Yuan C., Liu W., Yu D., Luo M., Fahima T., Nevo E., Li H., Liu Z., 2020. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytologist, 228 (3), 1027-1037.
  • Li M., Dong L., Zhu K., Wu Q., Chen Y., Lu P., Guo G., Zhang H., Zhang P., Li B., Li W., Yang Y., Hou Y., Cui X., Li H., Dong L., Zhao Y., Liu Z., 2022. Provoking a silent R gene in wheat genome confers resistance to powdery mildew. Plant Biotechnology Journal, 20 (11), 2039-2041.
  • Merchuk-Ovnat L., Barak V., Fahima T., Ordon F., Lidzbarsky G.A., Krugman T., Saranga Y., 2016. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Frontiers in Plant Science, 7, 452.
  • Morgounov A., Tufan H.A., Sharma R., Akin B., Bagci A., Braun H.J., Kaya Y., Keser M., Payne T.S., Sonder K., McIntosh R., 2012. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. European Journal of Plant Pathology, 132, 323-340.
  • Morgounov A., Keser M., Kan M., Küçükçongar M., Özdemir F., Gummadov N., Muminjanov H., Zuev E., Qualset C.O., 2016. Wheat landraces currently grown in Turkey: distribution, diversity, and use. Crop Science, 56 (6), 3112-3124.
  • Özdemir H.Y., Karakaya A., Çelik Oğuz A., 2017. Kırıkkale ilinde buğday ve arpa ekim alanlarında görülen fungal yaprak hastalıklarının belirlenmesi. Bitki Koruma Bülteni, 57 (2), 89-112.
  • Sönmezoğlu Ö.A., Yıldırım A., Türk Ü., Yanar Y., 2019. Bazı yerel makarnalık buğday çeşitlerinde küllemeye (Blumeria graminis f. sp. tritici) karşı dayanıklılığın belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 944-950.
  • Tosun M., Altınbaş M., İlker E., Tonk F.A., Küçükakça M., 2011. Buğdayda külleme (Erysiphe graminis) hastalığına dayanıklılığın kalıtımı. Bitkisel Araştırma Dergisi, 1, 6–10
  • Wu X.X., Xu X.F., Ma D.X., Chen R.Z., Li T.Y., Cao Y.Y., 2019. Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China. BMC Evolutionary Biology, 19, 1-11.
  • Wu X., Bian Q., Gao Y., Ni X., Sun Y., Xuan Y., Cao Y., Li T., 2021. Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ, 9, e10425.
  • Yang F., Wan H., Li J., Wang Q., Yang N., Zhu X., Liu Z., Yang Y., Ma W., Fan., Yang W., Zhou Y., 2022. Pentaploidization enriches the genetic diversity of wheat by enhancing the recombination of AB Genomes. Frontiers in Plant Science, 13, 883868.
  • Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D., 2017. Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91 (4), 714-724.
  • Zhang Q., Li Y., Li Y., Fahima T., Shen Q., Xie C., 2021. Introgression of the powdery mildew resistance genes Pm60 and Pm60b from Triticum urartu to common wheat using durum as a ‘bridge’. Pathogens, 11 (1), 25.
  • Zhou Y., Zhao X., Li Y., Xu J., Bi A., Kang L., Xu D., Chen H., Wang Y., Wang Y., Liu S., Jiao C., Lu H., Wang J., Yin C., Jiao Y., Lu F., 2020. Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52 (12), 1412-1422.

Assessment of Pm41 gene frequency in Turkish bread wheat germplasm

Year 2024, Volume: 64 Issue: 4, 50 - 59
https://doi.org/10.16955/bitkorb.1555981

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. tritici, poses a high risk to worldwide wheat production, resulting in severe yield reductions. Resistance breeding provides a sustainable approach to managing this disease, with the Pm41 gene being pivotal in providing all-stage resistance. This research examined 96 cultivars of Turkish bread wheat (Triticum aestivum) from several Turkish research institutions for the Pm41 gene. PCR analysis indicated that 57% of the studied cultivars possessed the Pm41 gene. The highest detection rate of 89% was recorded in cultivars from Bahri Dağdaş International Agricultural Research Institute Directorate/Konya, whereas Field Crops Research Institute Directorate/Ankara exhibited a lesser frequency of 29%. The data demonstrate regional disparities in Pm41 presence. The observed Pm41 gene in over half of the cultivars suggests that Turkish wheat cultivars possess gene variants that might be important for resistance. This work underscores the significance of preserving genetic materials for finding novel variants of the resistance genes, which are essential for sustainable wheat cultivation and food security.

Thanks

Author thanks Dr. Emine Burcu TURGAY for providing bread wheat germplasm collection.

References

  • Arslan M.S., Oğuz A.Ç., Karakaya A., 2024. Edirne ilinde buğday ve arpa bitkilerinde görülen yaprak hastalıkları. Journal of Agricultural Faculty of Bursa Uludag University, 38 (1), 13-26.
  • Aydın N., Demir B., Güleç T., Şermet C., Bayramoğlu H.O., Sayaslan A., Mut Z., 2021. Ekmeklik buğdayda geliştirilen rekombinant kendilenmiş hat populasyonunda kalite özellikleri için fenotipik ve genotipik değişim. Anadolu Tarım Bilimleri Dergisi, 36 (3), 418-432.
  • Baloch F.S., Ali A., Tajibayev D., Nadeem M.A., Ölmez F., Aktaş H., Alsaleh A., Cömertpay G., Imren M., Mustafa Z., Dababat A.A., Yang, S.H., 2024. Stripe rust resistance gene Yr15 in Turkish and Kazakhstan wheat germplasms and the potential of Turkish wild emmer for stripe rust breeding. Genetic Resources and Crop Evolution, 71 (6), 2699-2719.
  • Cao A., Xing L., Wang X., Yang X., Wang W., Sun Y., Qian C., Ni J., Chen Y., Liu D., Wang X., Chen, P., 2011. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences, 108 (19), 7727-7732.
  • Cavalet-Giorsa E., González-Muñoz A., Athiyannan N., Holden S., Salhi A., Gardener C., Quiroz-Chávez J., Rustamova S.M., Elkot A.F., Patpour M., Rasheed A., Mao L., Lagudah E.S., Sambasivam K., Periyannan S.K., Sharon A., Himmelbach A., Reif J.C., Knauft M., Mascher M., Stein N., Chayut N., Ghosh S., Perovic D., Putra A., Perera A.B., Hu C., Yu G., Ahmed H.I., Laquai K.D., Rivera L.F., Chen R., Wang Y., Gao X., Liu S., Raupp W.J., Olson E.L., Lee J., Chhuneja P., Kaur S., Zhang P., Park R.F., Ding Y., Liu D., Li W., Nasyrova F.Y., Dvorak J., Abbasi M., Li M., Kumar N., Wilku B., Meyer W.B., Boshoff W.H.P., Steffenson B.J., Matny O., Sharma P.K., Tiwari V.K., Grewal S., Pozniak C.J., Chawla H.S., Ens J., Dunning L.T., Kolmer J.A., Lazo G.R., Xu S.S., Gu Y.Q, Xu X., Uauy C., Abrouk M., Bougouffa S., Brar G.S., Brande B.H., Wulff B.B.H., Krattinger S.G., 2024. Origin and evolution of the bread wheat D genome. Nature, 633 (8031), 848-855.
  • Chai Y., Senay S., Horvath D., Pardey P., 2022. Multi-peril pathogen risks to global wheat production: A probabilistic loss and investment assessment. Frontiers in Plant Science, 13, 1034600. Chen X., Wang Y., Han G., Fan J., Tan Q., Liu G., Zhang H., Wang Y., 2024. Identification and transfer of a new powdery mildew resistance gene pmcahm from landrace changanhongmai into common wheat. Agronomy, 14 (4), 667.
  • Cheng H., Liu J., Wen J., Nie X., Xu L., Chen N., Li Z., Wang Q., Zheng Z., Li M., Cui L., Liu Z., Bian J., Wang Z., Xu S., Yang Q., Appels R., Han D., Song W., Sun Q., Jiang Y., 2019. Frequent intra-and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome biology, 20, 1-16.
  • Cheng B., Ding Y.Q., Gao X., Cao N., Xin Z.H., Zhang L.Y., 2020. The diversity of powdery mildew resistance gene loci among wheat germplasm in Southwest China. Cereal Research Communications, 48 (1), 65-70.
  • Cheng P., Guo M., Hao X., Guo X., Yao Q., Guo Q., Li Q., Wang B., 2022. Evaluation of powdery mildew resistance and molecular detection of resistance genes in an international wheat collection. Crop Protection, 160, 106033. Doyle J., 1991. DNA protocols for plants. In ‘Molecular techniques in taxonomy. Vol. 57. NATO ASI Series H: cell biology. Hewitt G.M., Johnston A.W., Young J.P.W., ((Eds. pp. 283–293.
  • Ilker E., Tonk F.A., Tosun M., Altinbas M., Kuçukakça M., 2009. Inheritance and combining ability in some powdery mildew resistant wheat lines. Crop Breeding and Applied Biotechnology, 9, 124-131. Laroche A., Frick M., Graf R.J., Larsen J., Laurie J.D., 2019. Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada. The Crop Journal, 7 (6), 739-749.
  • Li G., Fang T., Zhan H., Xie C., Li H., Yang T., Nevo E., Fashima., Sun Q., Liu Z., 2009. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119, 531-539.
  • Li G., Xu X., Bai G., Carver B.F., Hunger R., Bonman J.M., 2016. Identification of novel powdery mildew resistance sources in wheat. Crop Science, 56 (4), 1817-1830.
  • Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., Li Y., Shi W., Yang L., Wu Q., Chen Y., Lu P., Guo G., Zhang H., Zhang P., Zhu K, Li Y., Zhang Y., Wang R., Yuan C., Liu W., Yu D., Luo M., Fahima T., Nevo E., Li H., Liu Z., 2020. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytologist, 228 (3), 1027-1037.
  • Li M., Dong L., Zhu K., Wu Q., Chen Y., Lu P., Guo G., Zhang H., Zhang P., Li B., Li W., Yang Y., Hou Y., Cui X., Li H., Dong L., Zhao Y., Liu Z., 2022. Provoking a silent R gene in wheat genome confers resistance to powdery mildew. Plant Biotechnology Journal, 20 (11), 2039-2041.
  • Merchuk-Ovnat L., Barak V., Fahima T., Ordon F., Lidzbarsky G.A., Krugman T., Saranga Y., 2016. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Frontiers in Plant Science, 7, 452.
  • Morgounov A., Tufan H.A., Sharma R., Akin B., Bagci A., Braun H.J., Kaya Y., Keser M., Payne T.S., Sonder K., McIntosh R., 2012. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. European Journal of Plant Pathology, 132, 323-340.
  • Morgounov A., Keser M., Kan M., Küçükçongar M., Özdemir F., Gummadov N., Muminjanov H., Zuev E., Qualset C.O., 2016. Wheat landraces currently grown in Turkey: distribution, diversity, and use. Crop Science, 56 (6), 3112-3124.
  • Özdemir H.Y., Karakaya A., Çelik Oğuz A., 2017. Kırıkkale ilinde buğday ve arpa ekim alanlarında görülen fungal yaprak hastalıklarının belirlenmesi. Bitki Koruma Bülteni, 57 (2), 89-112.
  • Sönmezoğlu Ö.A., Yıldırım A., Türk Ü., Yanar Y., 2019. Bazı yerel makarnalık buğday çeşitlerinde küllemeye (Blumeria graminis f. sp. tritici) karşı dayanıklılığın belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 944-950.
  • Tosun M., Altınbaş M., İlker E., Tonk F.A., Küçükakça M., 2011. Buğdayda külleme (Erysiphe graminis) hastalığına dayanıklılığın kalıtımı. Bitkisel Araştırma Dergisi, 1, 6–10
  • Wu X.X., Xu X.F., Ma D.X., Chen R.Z., Li T.Y., Cao Y.Y., 2019. Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China. BMC Evolutionary Biology, 19, 1-11.
  • Wu X., Bian Q., Gao Y., Ni X., Sun Y., Xuan Y., Cao Y., Li T., 2021. Evaluation of resistance to powdery mildew and identification of resistance genes in wheat cultivars. PeerJ, 9, e10425.
  • Yang F., Wan H., Li J., Wang Q., Yang N., Zhu X., Liu Z., Yang Y., Ma W., Fan., Yang W., Zhou Y., 2022. Pentaploidization enriches the genetic diversity of wheat by enhancing the recombination of AB Genomes. Frontiers in Plant Science, 13, 883868.
  • Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D., 2017. Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91 (4), 714-724.
  • Zhang Q., Li Y., Li Y., Fahima T., Shen Q., Xie C., 2021. Introgression of the powdery mildew resistance genes Pm60 and Pm60b from Triticum urartu to common wheat using durum as a ‘bridge’. Pathogens, 11 (1), 25.
  • Zhou Y., Zhao X., Li Y., Xu J., Bi A., Kang L., Xu D., Chen H., Wang Y., Wang Y., Liu S., Jiao C., Lu H., Wang J., Yin C., Jiao Y., Lu F., 2020. Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52 (12), 1412-1422.
There are 26 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Article
Authors

Zemran Mustafa 0000-0002-1754-6320

Early Pub Date December 25, 2024
Publication Date
Submission Date September 25, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2024 Volume: 64 Issue: 4

Cite

APA Mustafa, Z. (2024). Assessment of Pm41 gene frequency in Turkish bread wheat germplasm. Plant Protection Bulletin, 64(4), 50-59. https://doi.org/10.16955/bitkorb.1555981
AMA Mustafa Z. Assessment of Pm41 gene frequency in Turkish bread wheat germplasm. Plant Protection Bulletin. December 2024;64(4):50-59. doi:10.16955/bitkorb.1555981
Chicago Mustafa, Zemran. “Assessment of Pm41 Gene Frequency in Turkish Bread Wheat Germplasm”. Plant Protection Bulletin 64, no. 4 (December 2024): 50-59. https://doi.org/10.16955/bitkorb.1555981.
EndNote Mustafa Z (December 1, 2024) Assessment of Pm41 gene frequency in Turkish bread wheat germplasm. Plant Protection Bulletin 64 4 50–59.
IEEE Z. Mustafa, “Assessment of Pm41 gene frequency in Turkish bread wheat germplasm”, Plant Protection Bulletin, vol. 64, no. 4, pp. 50–59, 2024, doi: 10.16955/bitkorb.1555981.
ISNAD Mustafa, Zemran. “Assessment of Pm41 Gene Frequency in Turkish Bread Wheat Germplasm”. Plant Protection Bulletin 64/4 (December 2024), 50-59. https://doi.org/10.16955/bitkorb.1555981.
JAMA Mustafa Z. Assessment of Pm41 gene frequency in Turkish bread wheat germplasm. Plant Protection Bulletin. 2024;64:50–59.
MLA Mustafa, Zemran. “Assessment of Pm41 Gene Frequency in Turkish Bread Wheat Germplasm”. Plant Protection Bulletin, vol. 64, no. 4, 2024, pp. 50-59, doi:10.16955/bitkorb.1555981.
Vancouver Mustafa Z. Assessment of Pm41 gene frequency in Turkish bread wheat germplasm. Plant Protection Bulletin. 2024;64(4):50-9.

136481365013649