Research Article
BibTex RIS Cite

Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province

Year 2025, Volume: 65 Issue: 1, 50 - 58, 01.04.2025
https://doi.org/10.16955/bitkorb.1552488

Abstract

Phytoplasmas cause infections in numerous plants in agricultural ecosystems, causing significant yield and quality losses in products. In recent years, it has been known that diseases caused by phytoplasmas cause economic losses in eggplant (Solanum melongena L.) cultivation. In Turkey, research on infections caused by phytoplasmas in eggplant growing areas is quite limited. This study was carried out to detect phytoplasma infections symptomatologically and molecularly in eggplant production areas in Şanlıurfa province. Fourteen samples were collected from eggplants exhibiting symptoms such as witches’ broom, flower abnormalities (virescence, phyllody), elongation of the pedicle, arising of new shoots from flower parts, yellowing and proliferation. Phytoplasma infection was detected in 8 symptomatic samples using 16S rRNA-specific primers, P1/P7 and R16F2n/R16R2, by direct and nested PCR. Sequence information of fragments obtained as a result of molecular studies was extracted and BLAST analyses were performed. According to nucleotide sequence similarity in the 16S rRNA gene region, it was determined that the genetic group of phytoplasma causing infection in eggplant was related to ‘Candidatus Phytoplasma solani’ (CaPsol) belonging to 16SrXII-A subgroup with 98% sequence identity. To our best knowledge, this study suggests comprehensive symptomatic diagnosis of CaPsol infecting eggplants in Türkiye.

References

  • Akhtar K.P., Sarwar G., Dickinson M., Ahmad M., Haq M.A., Hameed S., Iqbal M.J., 2009. Sesame phyllody disease: symptomatology, etiology and transmission in Pakistan. Turkish Journal of Agriculture and Forestry, 33 85), 477–486. doi:10.3906/tar-0901-23
  • Al-Subhi A.M., Al-Saady N.A., Khan A.J., Deadman M.L., 2011. First report of a group 16srII phytoplasma associated with witches’-broom of eggplant in Oman. Plant Disease, 95 (3), 360. doi: 10.1094/PDIS-10-10-0761
  • Amaral Mello A.P.O., Bedendo I.P., Camargo L.E.A., 2007. Identidade molecular dos fitoplasmas associados aos enfezamentos do tomateiro e da berinjela com base na ana´lise do gene 16S rDNA. Summa Phytopathologica, 33, 258–263 (in Portuguese).
  • Amaral Mello P., Eckstein B., Flores D., Kreyci P.F., Bedendo I.P., 2011. Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calyx representative of two subgroups, a lineage of 16SrIII-J and the new sub- group 16SrIII-U. International Journal of Systematic and Evolutionary Microbiology, 61 (Pt 6), 1454–1461. doi: 10.1099/ijs.0.019141-0
  • Arocha Y., Antesana O., Montellano E., Franco P., Plata G., Jones P., 2007. ‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. International Journal of Systematic and Evolutionary Microbiology, 57 (Pt 8), 1704–1710. doi:10.1099/ijs.0.64851-0
  • Asudi G.O., Omenge K.M., Paulmann M.K., Reichelt M., Grabe V., Mithöfer A., Oelmüller R., Furch A.C.U., 2021. The physiological and biochemical effects on Napier grass plants following napier grass stunt phytoplasma infection. Phytopathology, 111 (4), 703–712. doi:10.1094/PHYTO-08-20-0357-R
  • Azadvar M., Baranwal V.K., 2012. Multilocus sequence analysis of phytoplasma associated with brinjal little leaf disease and its detection in Hishimonas phycitis in India. Phytopathogenic Mollicutes, 2, 15-21. doi: 10.5958/j.2249-4669.2.1.001
  • Barros T.S.L., Kitajima E.W., Resende R.O., 1998. Diversidade de isolados brasileiros de fitoplasmas atrave´s da ana´lise do 16S rDNA. Phytopathology of Brasil, 23, 459–465 (in Portuguese).
  • Bertaccini A., 2007. Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience-Landmark, 12, 673–689. doi: 10.2741/2092
  • Bertaccini A., 2022. Plants and phytoplasmas: when bacteria modify plants. Plants, 11 (11), 1425. https://doi.org/10.3390/plants11111425.
  • Bertaccini A., Duduk B., Paltrinieri S., Contaldo N., 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences, 5, 1763–1788. doi: 10.4236/ajps.2014.512191
  • Bertaccini A., Arocha-Rosete Y., Contaldo N., Duduk B., Fior N., Montano H.G., Kube M., Kuo C.H., Martini M., Oshima K., 2022. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. International Journal of Systematic and Evolutionary Microbiology, 74, 005353.
  • Botti S., Bertaccini A., 2003. Variability and functional role of chromosomal sequences in phytoplasmas of 16SrI-B subgroup (aster yellows and related strains). Journal of Applied Microbiology, 94 (1), 103–110. doi: 10.1046/j.1365-2672.2003.01809.x
  • CABI, 2024. Invasive Species Compendium. Candidatus Phytoplasma solani (Stolbur Phytoplasma). https://www.cabi.org/isc/datasheet/108243/htm (accessed date: 18.09.2024).
  • Cimerman A., Pacifico D., Salar P., Marzachì C., Foissac X., 2009. Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied and Environmental Microbiology, 75 (9), 2951–2957. doi: 10.1128/AEM.02613-08
  • Danet J.L., Foissac X., Zreik L., Salar P., Verdin E., Nourrisseau J.G., Garnier M., 2003. "Candidatus Phlomobacter fragariae" is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology, 93 (6), 644–649. doi: 10.1094/PHYTO.2003.93.6.644
  • Danet J.L., Balakishiyeva G., Cimerman A., Sauvion N., Marie-Jeanne V., Labonne G., Lavina A., Batlle A., Krizanac I., Skoric D., Ermacora P., Ulubas Serce C., Caglayan K., Jarausch W., Foissac X., 2011. Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology, 157 (2), 438–450. https://doi.org/10.1099/mic.0.043547-0
  • Darabakula M., Mateeti S.T., Pacini F., Bertaccini A., Contaldo N., 2024. Eggplant little leaf-associated phytoplasma detection in seedlings under insect-proof conditions. International Journal of Plant Biology, 15 (2), 217–229. doi.org/10.3390/ijpb15020018
  • Deng S., Hiruki C., 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 14, 53–61.
  • Doyle J.J., Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
  • Duduk B., Tian J.B., Contald N., Fan X.P., Paltrinieri S., Chen Q.F., Zhao Q.F., Bertaccini A., 2010. Occurrence of phytoplasmas related to “stolbur” and to ‘Candidatus Phytoplasma japonicum’ in woody host plants in China. Journal of Phytopathology, 158 (2), 100–104. https://doi.org/10.1111/j.1439-0434.2009.01586.x
  • Ember I., Acs Z., Munyaneza J.E., Crosslin J.M., Kolber M., 2011. Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. European Journal of Plant Pathology, 130 (3), 367-377. doi: 10.1007/s10658-011-9759-5
  • Erilmez S., Kaya A., Üstün N., Güven N., Altındişli F.Ö., Özsemerci F., 2022. Ege Bölgesi bağ alanlarında fitoplazma hastalıklarının ve olası vektör böcek türlerinin belirlenmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 32 (2), 264-276. https://doi.org/10.18615/anadolu.1225552
  • Fabre A., Danet J.L., Foissac X., 2011. The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472 (1-2), 37–41. doi: 10.1016/j.gene.2010.10.012
  • Felsenstein J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x
  • Fialová R., Válová P., Balakishiyeva G., Danet J.L., Šafárová D., Foissac X., Navrátil M., 2009. Genetic variability of “stolbur” phytoplasma in annual crop and wild plant species in south Moravia. Journal of Plant Pathology, 91, 411–416. doi:10.4454/jpp.v91i2.971
  • Fos A., Danet J.L., Zreik L., Garnier M., Bove J.M., 1992. Use of a monoclonal-antibody to detect the stolbur mycoplasma-like organism in plants and insects and to identify a vector in France. Plant Disease, 76 (11), 1092–1096.
  • Garnier M., 2000. The stolbur phytoplasma: an ubiquitous agent. Comptes Rendus de l’Academie d’Agriculture de France, 86, 27–33.
  • Gawande Priya Y., Karthikeyan M., Johnson I., Swarnapriya R., Manikanda Boopathi N., 2022. Overview of little leaf disease in eggplant in Tamil Nadu. The Pharma Innovation Journal, 11 (9S), 2178-2182.
  • Gonella E., Negri I., Marzorati M., Brusetti L., Pajoro M. Mandrioli M., 2008. Study of the bacterial community affiliated to Hyalesthes obsoletus, the insect vector of “bois noir” phytoplasma of grape. Bulletin of Insectology, 61, 221–222.
  • Gundersen D., Lee I., 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.
  • Hodgetts J., Boonham N., Mumford R., Harrison N., Dickinson M., 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology, 58 (Pt 8), 1826–1837. doi: 10.1099/ijs.0.65668-0
  • Huang W., MacLean A.M., Sugio A., Maqbool A., Busscher M., Cho S.T., Kamoun S., Kuo C.H., Immink R.G.H., Hogenhout S.A., 2021. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell, 184 (20), 5201-5214.e12. doi: 10.1016/j.cell.2021.08.029
  • Kakizawa S., Oshima K., Namba S., 2006. Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology, 14 (6), 254–256. doi: 10.1016/j.tim.2006.04.008
  • Karthikeyan M., Yogiraj G.P., Elaiyabharathi T., Jesu B.A.J., Johnson I., Jaffer S.B., Dhanabalan S.P., Boopathi N.M., Marimuthu S., Nejad H.S., Adorada D.L., 2024. Comprehensive analysis of little leaf disease incidence and resistance in eggplant. BMC Plant Biology, 24 (1), 576. https://doi.org/10.1186/s12870-024-05257-4
  • Kelly P.L., Arocha Y., Dider S.Z., 2009. First report of a 16SrI, ’Candidatus Phytoplasma asteris’ isolate affecting eggplant and Mikania sp. in Bangladesh. Plant Pathology, 58 (4), 789. https://doi.org/10.1111/j.1365-3059.2009.02070.x
  • Kimura M.A., 1980. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111-120. doi: 10.1007/BF01731581
  • Kirdat K., Tiwarekar B., Sathe S., Yadav A., 2023. From sequences to species: charting the phytoplasma classification and taxonomy in the era of taxogenomics. Frontiers in Microbiology, 14, 1123783. doi: 10.3389/fmicb.2023.1123783
  • Kumar J., Gunapati S., Singh S.P., Lalit A., Sharma N.C., Tuli R., 2012. First report of a ’Candidatus Phytoplasma asteris’ (16SrI group) associated with little leaf disease of Solanum melongena (brinjal) in India. New Disease Reports, 26 (1), 21. https://doi.org/10.5197/j.2044-0588.2012.026.021
  • Kumar M., 2015. Genetic diversity and natural spread sources of brinjal little leaf phytoplasma. M.Sc. Thesis. Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India, p. 103.
  • Langer M., Maixner M., 2004. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43 (4), 191–200.
  • Lee I.M., Gundersen-Rindal D.E., Davis R.E. Bartoszyk I.M., 1998. Revised classification scheme of phytoplasma based on RFLP analyses of 16S rDNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Bacteriology, 8 (4), 1153–1169. https://doi.org/10.1099/00207713-48-4-1153
  • Lee I-M, Zhao Y., Bottner K.D., 2006. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20 (2), 87–91. doi: 10.1016/j.mcp.2005.10.001
  • Lee I.M., Bottner-Parker K.D., Zhao Y., Davis R.E., Harrison N.A., 2010. Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology, 60, 2887–2897. doi: 10.1099/ijs.0.019695-0
  • Li Z., Tang Y., She X.M., Yu L., Lan G., He Z., 2019. First report of 16SrII-D phytoplasma associated with eggplant phyllody in China. Canadian Journal of Plant Pathology, 41, 339-344. doi:10.1080/07060661.2019.1596162
  • Marcone C., Lee I-M., Davis R.E., Ragozzino A., Seemüller E., 2000. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology, 50, 1703–1713. doi: 10.1099/00207713-50-5-1703
  • Martini M., Botti S., Marcone C., Marzachì C., Casati P., Bianco P.A., Benedetti R., Bertaccini A., 2002. Genetic variability among “flavescence dorée” phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 16, 197–208. doi: 10.1006/mcpr.2002.0410
  • Martini M., Lee I-M., Bottner K.D., Zhao Y., Botti S., Bertaccini A., Harrison N.A., Carraro L., Marcone C., Khan J., Osler R., 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology 57, 2037–2051. doi: 10.1099/ijs.0.65013-0
  • Navrátil M., Válová P., Fialová R., Lauterer P., Šafářová D., Starý M., 2009. The incidence of stolbur disease and associated yield losses in vegetable crops in South Moravia (Czech Republic). Crop Protection, 28 (10), 898-904. https://doi.org/10.1016/j.cropro.2009.05.008
  • Mitra D.K., 1993. Little leaf, a serious disease of eggplant (Solanum melongena). In: Raychaudhuri, S.P., Teakle, D.S. (Eds.), Management of Plant Diseases Caused by Fastidious Prokaryotes. Associated Publishing Co, New Delhi, India, pp. 73-78.
  • Mitrovic J., Kakizawa S., Duduk B., Oshima K., Namba S., Bertaccini A., 2011. The cpn60 gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology, 159, 41–48. http://dx.doi.org/10.1111/j.1744-7348.2011.00472.x
  • Mitrovic J., Smiljković M., Seemüller E., Reinhardt R., Hüttel B., Büttner C., Bertaccini A., Kube M., Duduk B., 2015. Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Disease, 99, 1578–1583.
  • Montano H.G., Dally E.L., Davis R.E., Pimentel J.P., Brioso P.S.T., 2001. First report of natural infection by “Candidatus Phytoplasma brasiliense” in Catharanthus roseus. Plant Disease, 85 (11), 1209. doi: 10.1094/PDIS.2001.85.11.1209C
  • Okuda S., Prince J.P., Davis R.E., Dally E.L., Lee I.M., Mogen B., Kato S., 1997. Two groups of phytoplasma from Japan distinguished on the basis of amplification and restriction analysis of 16S rDNA. Plant Disease, 81 (3), 301–305. doi: 10.1094/PDIS.1997.81.3.301
  • Omar A.F., Alsohim A.S., Dumonceaux T.J., Pérez-López E., 2020. Molecular characterization of 'Candidatus Phytoplasma australasia' 16SrII subgroups associated with eggplant, cabbage, beetroot, and celery in Saudi Arabia, Crop Protection, 127, 104970. https://doi.org/10.1016/j.cropro.2019.104970
  • Omar A.F., Foissac X., 2012. Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology, 133, 353–360. doi: 10.1007/s10658-011-9908-x
  • Quaglino F., Sanna F., Moussa A., Faccincani M., Passera A., Casati P., Bianco P.A., Mori N., 2019. Identification and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine. Scientific Reports, 9 (1), 19522. https://doi.org/10.1038/s41598-019-56076-9
  • Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P.A., Wei W., Davis R.E. 2013. “Candidatus Phytoplasma solani”, a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63 (Pt 8), 2879–2894. doi:10.1099/ijs.0.044750-0
  • Randa Zelyüt F., Ertunç F., Şenal D., 2022. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin, 62 (1), 24-33. https://doi.org/10.16955/bitkorb.1014427
  • Rao G.P., Kumar M., 2017. World status of phytoplasma diseases associated with eggplant. Crop Protection, 96, 22–29. https://doi.org/10.1016/j.cropro.2017.01.005
  • Rao G.P., Mall S., Raj S.K., Snehi S.K., 2011. Phytoplasma diseases affecting various plant species in India. Acta Phytopathologica et Entomologica Hungarica, 46 (1), 59-99. https://doi.org/10.1556/aphyt.46.2011.1.7
  • Šafárˇová D., Zemánek T., Válová P., Navrátil M., 2016. ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. International Journal of Systematic and Evolutionary Bacteriology, 66 (4), 1745–1753. doi: 10.1099/ijsem.0.000937
  • Saitou N., Nei M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
  • Schneider B., Seemüller E., 2009. Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP- and sequence analyses of the hflB gene. Journal of Plant Pathology, 91 (1), 103–112. doi: 10.4454/jpp.v91i1.630
  • Schneider B., Seemüller E., 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Applied and Environmental Microbiology, 60 (9), 3409-3412. doi: 10.1128/aem.60.9.3409-3412.1994
  • Sertkaya G., Martini M., Musetti R., Osler R., 2007. Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bulletin of Insectology, 60 (2), 141–142.
  • Siampour M., Izadpanah K., Galettob L., Salehic M., Marzachi, C., 2013. Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology, 62, 452-459. doi: 10.1111/J.1365-3059.2012.02662.X
  • Siddique A.B.M., Agrawal G.K., Alam N., Krishina Reddy M., 2001. Electron microscopy and molecular characterization of phytoplasmas associated with little leaf disease of brinjal (Solanum melongena L.) and periwinkle (Catharanthus roseus) in Bangladesh. Journal of Phytopathology, 149 (5), 237–244. https://doi.org/10.1046/j.1439-0434.2001.00590.x
  • Tamura K., Stecher G., Kumar S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38 (7), 3022-3027 https://doi.org/10.1093/molbev/msab120
  • Tedeschi R., Alma A., 2006. Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Disease, 90 (3), 284–290. https://doi.org/10.1094/PD-90-0284
  • Tohidi Z., Salehi M., Ghasemi S., Khanchezar A., Shahamiri S.M., 2015. Association of a 16SrIX-C phytoplasma with eggplant phyllody in Iran. Journal of Crop Protection, 4 (2), 247–256.
  • TUİK, 2023. Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr. (accessed date: 15.03.2025).
  • Usta M., Guller A., Sipahioğlu H.M., 2018. Molecular analysis of ‘Canditatus Phytoplasma trifolii’ and ‘Canditatus Phytoplasma solani’ associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology, 20, 1991-1996. https://doi.org/10.17957/IJAB/15.0721
  • Usta M., Güller A., Sipahioğlu H.M., 2022. Detection, in silico analysis and molecular diversity of phytoplasmas from solanaceous crops in Turkey. Plant Protection Science, 58 (1), 31–39. https://doi.org/10.17221/115/2021-PPS
  • Valiunas D., Jomantiene R., Davis R.E., 2013. Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny. International Journal of Systematic and Evolutionary Microbiology, 63 (Pt 10), 3904–3914. doi: 10.1099/ijs.0.051912-0
  • Venkataravanappa V., Prasanna H.C., Lakshminarayana C.N., Reddy M.K., 2018. Molecular detection and characterization of phytoplasma in association with begomovirus in eggplant. Acta Virologica, 62 (3), 246-258. doi: 10.4149/av_2018_218
  • Wang R., Bai B., Li D., Wang J., Huang W., Wu Y., Zhao L., 2024. Phytoplasma: a plant pathogen that cannot be ignored in agricultural production-research progress and outlook. Molecular Plant Pathology, 25 (2). e13437. doi: 10.1111/mpp.13437
  • Wei W., Lee M., Davis R.E., Suo X., Zhao Y., 2008. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 58 (10), 2368-2377. https://doi.org/10.1099/ijs.0.65868-0
  • Weintraub P.G., Beanland L., 2006. Insect vectors of phytoplasmas. Annual Review of Entomology, 51 (1), 91-111. doi: 10.1146/annurev.ento.51.110104.151039
  • Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Van Etten J., 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology, 171 (12), 6455-6467. 10.1128/jb.171.12.6455-6467.1989
  • Yadav V., Mahadevakumar S., Tejaswini G.S., Shilpa N., Amruthavalli C., Janardhana G.R., 2016. First report of 16SrII-D phytoplasma associated with eggplant big bud (Solanum melongena L.) in India. Plant Disease, 100, 517. doi: 10.1094/PDIS-07-15-0761-PDN
  • Zelyüt F.R., Santosa A.I., Karanfil A., 2022. ‘Candidatus Phytoplasma solani’ (subgroup 16SrXII-A) associated with Nicotiana tabacum leaf abnormality in Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 19 (3), 571-581. https://doi.org/10.33462/jotaf.1028263
  • Zelyüt F.R., 2023. Genetic diversity and molecular variability of Candidatus Phytoplasma solani based on multilocus sequence typing analysis in tomato plantations of western Turkey. Physiological and Molecular Plant Pathology, 127, 102120. https://doi.org/10.1016/j.pmpp.2023.102120

Şanlıurfa ilinde anormal çiçek yapısı (phyllody ve virescence) ve cadı süpürgesi simptomları gösteren patlıcan bitkilerinde ‘Candidatus phytoplasma solani fitoplazma-ilişkili hastalığın tanımlanması

Year 2025, Volume: 65 Issue: 1, 50 - 58, 01.04.2025
https://doi.org/10.16955/bitkorb.1552488

Abstract

Fitoplazmalar tarımsal ekosistemlerdeki çok sayıda bitkide enfeksiyonlara neden olarak ürünlerde önemli verim ve kalite kayıplarına yol açmaktadır. Son yıllarda patlıcan (Solanum melongena L.) yetiştiriciliğinde fitoplazmalardan kaynaklanan hastalıkların ekonomik kayıplara neden olduğu bilinmektedir. Türkiye'de patlıcan yetiştirilen alanlarda fitoplazmaların neden olduğu enfeksiyonlara ilişkin araştırmalar oldukça sınırlıdır. Bu çalışma, Şanlıurfa ilinde patlıcan üretim alanlarında görülen fitoplazma enfeksiyonlarının simptomatolojik ve moleküler olarak tespiti amacıyla yürütülmüştür. Cadı süpürgesi hastalığı, çiçek anormallikleri (viresens, fillodi), çiçek sapının uzaması, çiçek kısımlarından yeni sürgünlerin çıkması, sararma ve çoğalma gibi belirtiler gösteren patlıcanlardan 14 örnek toplanmıştır. 8 simptomatik örnekte 16S rRNA-spesifik primerler, P1/P7 ve R16F2n/R16R2 kullanılarak direkt ve nested PCR ile fitoplazma enfeksiyonu tespit edilmiştir. Moleküler çalışmalar sonucunda elde edilen fragmentlerin sekans bilgileri çıkarılmış ve BLAST analizleri yapılmıştır. 16S rRNA gen bölgesindeki nükleotid dizi benzerliğine göre, patlıcanda enfeksiyona neden olan fitoplazmanın genetik grubunun %98 dizi benzerliği ile 16SrXII-A alt grubuna ait ‘Candidatus Phytoplasma solani’ (CaPsol) ile ilişkili olduğu belirlenmiştir. Bilgilerimize göre, bu çalışma Türkiye'de patlıcanları enfekte eden CaPsol'ün kapsamlı semptomatik teşhisini önermektedir.

References

  • Akhtar K.P., Sarwar G., Dickinson M., Ahmad M., Haq M.A., Hameed S., Iqbal M.J., 2009. Sesame phyllody disease: symptomatology, etiology and transmission in Pakistan. Turkish Journal of Agriculture and Forestry, 33 85), 477–486. doi:10.3906/tar-0901-23
  • Al-Subhi A.M., Al-Saady N.A., Khan A.J., Deadman M.L., 2011. First report of a group 16srII phytoplasma associated with witches’-broom of eggplant in Oman. Plant Disease, 95 (3), 360. doi: 10.1094/PDIS-10-10-0761
  • Amaral Mello A.P.O., Bedendo I.P., Camargo L.E.A., 2007. Identidade molecular dos fitoplasmas associados aos enfezamentos do tomateiro e da berinjela com base na ana´lise do gene 16S rDNA. Summa Phytopathologica, 33, 258–263 (in Portuguese).
  • Amaral Mello P., Eckstein B., Flores D., Kreyci P.F., Bedendo I.P., 2011. Identification by computer-simulated RFLP of phytoplasmas associated with eggplant giant calyx representative of two subgroups, a lineage of 16SrIII-J and the new sub- group 16SrIII-U. International Journal of Systematic and Evolutionary Microbiology, 61 (Pt 6), 1454–1461. doi: 10.1099/ijs.0.019141-0
  • Arocha Y., Antesana O., Montellano E., Franco P., Plata G., Jones P., 2007. ‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. International Journal of Systematic and Evolutionary Microbiology, 57 (Pt 8), 1704–1710. doi:10.1099/ijs.0.64851-0
  • Asudi G.O., Omenge K.M., Paulmann M.K., Reichelt M., Grabe V., Mithöfer A., Oelmüller R., Furch A.C.U., 2021. The physiological and biochemical effects on Napier grass plants following napier grass stunt phytoplasma infection. Phytopathology, 111 (4), 703–712. doi:10.1094/PHYTO-08-20-0357-R
  • Azadvar M., Baranwal V.K., 2012. Multilocus sequence analysis of phytoplasma associated with brinjal little leaf disease and its detection in Hishimonas phycitis in India. Phytopathogenic Mollicutes, 2, 15-21. doi: 10.5958/j.2249-4669.2.1.001
  • Barros T.S.L., Kitajima E.W., Resende R.O., 1998. Diversidade de isolados brasileiros de fitoplasmas atrave´s da ana´lise do 16S rDNA. Phytopathology of Brasil, 23, 459–465 (in Portuguese).
  • Bertaccini A., 2007. Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience-Landmark, 12, 673–689. doi: 10.2741/2092
  • Bertaccini A., 2022. Plants and phytoplasmas: when bacteria modify plants. Plants, 11 (11), 1425. https://doi.org/10.3390/plants11111425.
  • Bertaccini A., Duduk B., Paltrinieri S., Contaldo N., 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences, 5, 1763–1788. doi: 10.4236/ajps.2014.512191
  • Bertaccini A., Arocha-Rosete Y., Contaldo N., Duduk B., Fior N., Montano H.G., Kube M., Kuo C.H., Martini M., Oshima K., 2022. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. International Journal of Systematic and Evolutionary Microbiology, 74, 005353.
  • Botti S., Bertaccini A., 2003. Variability and functional role of chromosomal sequences in phytoplasmas of 16SrI-B subgroup (aster yellows and related strains). Journal of Applied Microbiology, 94 (1), 103–110. doi: 10.1046/j.1365-2672.2003.01809.x
  • CABI, 2024. Invasive Species Compendium. Candidatus Phytoplasma solani (Stolbur Phytoplasma). https://www.cabi.org/isc/datasheet/108243/htm (accessed date: 18.09.2024).
  • Cimerman A., Pacifico D., Salar P., Marzachì C., Foissac X., 2009. Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied and Environmental Microbiology, 75 (9), 2951–2957. doi: 10.1128/AEM.02613-08
  • Danet J.L., Foissac X., Zreik L., Salar P., Verdin E., Nourrisseau J.G., Garnier M., 2003. "Candidatus Phlomobacter fragariae" is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology, 93 (6), 644–649. doi: 10.1094/PHYTO.2003.93.6.644
  • Danet J.L., Balakishiyeva G., Cimerman A., Sauvion N., Marie-Jeanne V., Labonne G., Lavina A., Batlle A., Krizanac I., Skoric D., Ermacora P., Ulubas Serce C., Caglayan K., Jarausch W., Foissac X., 2011. Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology, 157 (2), 438–450. https://doi.org/10.1099/mic.0.043547-0
  • Darabakula M., Mateeti S.T., Pacini F., Bertaccini A., Contaldo N., 2024. Eggplant little leaf-associated phytoplasma detection in seedlings under insect-proof conditions. International Journal of Plant Biology, 15 (2), 217–229. doi.org/10.3390/ijpb15020018
  • Deng S., Hiruki C., 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 14, 53–61.
  • Doyle J.J., Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
  • Duduk B., Tian J.B., Contald N., Fan X.P., Paltrinieri S., Chen Q.F., Zhao Q.F., Bertaccini A., 2010. Occurrence of phytoplasmas related to “stolbur” and to ‘Candidatus Phytoplasma japonicum’ in woody host plants in China. Journal of Phytopathology, 158 (2), 100–104. https://doi.org/10.1111/j.1439-0434.2009.01586.x
  • Ember I., Acs Z., Munyaneza J.E., Crosslin J.M., Kolber M., 2011. Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. European Journal of Plant Pathology, 130 (3), 367-377. doi: 10.1007/s10658-011-9759-5
  • Erilmez S., Kaya A., Üstün N., Güven N., Altındişli F.Ö., Özsemerci F., 2022. Ege Bölgesi bağ alanlarında fitoplazma hastalıklarının ve olası vektör böcek türlerinin belirlenmesi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 32 (2), 264-276. https://doi.org/10.18615/anadolu.1225552
  • Fabre A., Danet J.L., Foissac X., 2011. The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472 (1-2), 37–41. doi: 10.1016/j.gene.2010.10.012
  • Felsenstein J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x
  • Fialová R., Válová P., Balakishiyeva G., Danet J.L., Šafárová D., Foissac X., Navrátil M., 2009. Genetic variability of “stolbur” phytoplasma in annual crop and wild plant species in south Moravia. Journal of Plant Pathology, 91, 411–416. doi:10.4454/jpp.v91i2.971
  • Fos A., Danet J.L., Zreik L., Garnier M., Bove J.M., 1992. Use of a monoclonal-antibody to detect the stolbur mycoplasma-like organism in plants and insects and to identify a vector in France. Plant Disease, 76 (11), 1092–1096.
  • Garnier M., 2000. The stolbur phytoplasma: an ubiquitous agent. Comptes Rendus de l’Academie d’Agriculture de France, 86, 27–33.
  • Gawande Priya Y., Karthikeyan M., Johnson I., Swarnapriya R., Manikanda Boopathi N., 2022. Overview of little leaf disease in eggplant in Tamil Nadu. The Pharma Innovation Journal, 11 (9S), 2178-2182.
  • Gonella E., Negri I., Marzorati M., Brusetti L., Pajoro M. Mandrioli M., 2008. Study of the bacterial community affiliated to Hyalesthes obsoletus, the insect vector of “bois noir” phytoplasma of grape. Bulletin of Insectology, 61, 221–222.
  • Gundersen D., Lee I., 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.
  • Hodgetts J., Boonham N., Mumford R., Harrison N., Dickinson M., 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology, 58 (Pt 8), 1826–1837. doi: 10.1099/ijs.0.65668-0
  • Huang W., MacLean A.M., Sugio A., Maqbool A., Busscher M., Cho S.T., Kamoun S., Kuo C.H., Immink R.G.H., Hogenhout S.A., 2021. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell, 184 (20), 5201-5214.e12. doi: 10.1016/j.cell.2021.08.029
  • Kakizawa S., Oshima K., Namba S., 2006. Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology, 14 (6), 254–256. doi: 10.1016/j.tim.2006.04.008
  • Karthikeyan M., Yogiraj G.P., Elaiyabharathi T., Jesu B.A.J., Johnson I., Jaffer S.B., Dhanabalan S.P., Boopathi N.M., Marimuthu S., Nejad H.S., Adorada D.L., 2024. Comprehensive analysis of little leaf disease incidence and resistance in eggplant. BMC Plant Biology, 24 (1), 576. https://doi.org/10.1186/s12870-024-05257-4
  • Kelly P.L., Arocha Y., Dider S.Z., 2009. First report of a 16SrI, ’Candidatus Phytoplasma asteris’ isolate affecting eggplant and Mikania sp. in Bangladesh. Plant Pathology, 58 (4), 789. https://doi.org/10.1111/j.1365-3059.2009.02070.x
  • Kimura M.A., 1980. Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16 (2), 111-120. doi: 10.1007/BF01731581
  • Kirdat K., Tiwarekar B., Sathe S., Yadav A., 2023. From sequences to species: charting the phytoplasma classification and taxonomy in the era of taxogenomics. Frontiers in Microbiology, 14, 1123783. doi: 10.3389/fmicb.2023.1123783
  • Kumar J., Gunapati S., Singh S.P., Lalit A., Sharma N.C., Tuli R., 2012. First report of a ’Candidatus Phytoplasma asteris’ (16SrI group) associated with little leaf disease of Solanum melongena (brinjal) in India. New Disease Reports, 26 (1), 21. https://doi.org/10.5197/j.2044-0588.2012.026.021
  • Kumar M., 2015. Genetic diversity and natural spread sources of brinjal little leaf phytoplasma. M.Sc. Thesis. Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India, p. 103.
  • Langer M., Maixner M., 2004. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43 (4), 191–200.
  • Lee I.M., Gundersen-Rindal D.E., Davis R.E. Bartoszyk I.M., 1998. Revised classification scheme of phytoplasma based on RFLP analyses of 16S rDNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Bacteriology, 8 (4), 1153–1169. https://doi.org/10.1099/00207713-48-4-1153
  • Lee I-M, Zhao Y., Bottner K.D., 2006. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20 (2), 87–91. doi: 10.1016/j.mcp.2005.10.001
  • Lee I.M., Bottner-Parker K.D., Zhao Y., Davis R.E., Harrison N.A., 2010. Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology, 60, 2887–2897. doi: 10.1099/ijs.0.019695-0
  • Li Z., Tang Y., She X.M., Yu L., Lan G., He Z., 2019. First report of 16SrII-D phytoplasma associated with eggplant phyllody in China. Canadian Journal of Plant Pathology, 41, 339-344. doi:10.1080/07060661.2019.1596162
  • Marcone C., Lee I-M., Davis R.E., Ragozzino A., Seemüller E., 2000. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology, 50, 1703–1713. doi: 10.1099/00207713-50-5-1703
  • Martini M., Botti S., Marcone C., Marzachì C., Casati P., Bianco P.A., Benedetti R., Bertaccini A., 2002. Genetic variability among “flavescence dorée” phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 16, 197–208. doi: 10.1006/mcpr.2002.0410
  • Martini M., Lee I-M., Bottner K.D., Zhao Y., Botti S., Bertaccini A., Harrison N.A., Carraro L., Marcone C., Khan J., Osler R., 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology 57, 2037–2051. doi: 10.1099/ijs.0.65013-0
  • Navrátil M., Válová P., Fialová R., Lauterer P., Šafářová D., Starý M., 2009. The incidence of stolbur disease and associated yield losses in vegetable crops in South Moravia (Czech Republic). Crop Protection, 28 (10), 898-904. https://doi.org/10.1016/j.cropro.2009.05.008
  • Mitra D.K., 1993. Little leaf, a serious disease of eggplant (Solanum melongena). In: Raychaudhuri, S.P., Teakle, D.S. (Eds.), Management of Plant Diseases Caused by Fastidious Prokaryotes. Associated Publishing Co, New Delhi, India, pp. 73-78.
  • Mitrovic J., Kakizawa S., Duduk B., Oshima K., Namba S., Bertaccini A., 2011. The cpn60 gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology, 159, 41–48. http://dx.doi.org/10.1111/j.1744-7348.2011.00472.x
  • Mitrovic J., Smiljković M., Seemüller E., Reinhardt R., Hüttel B., Büttner C., Bertaccini A., Kube M., Duduk B., 2015. Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Disease, 99, 1578–1583.
  • Montano H.G., Dally E.L., Davis R.E., Pimentel J.P., Brioso P.S.T., 2001. First report of natural infection by “Candidatus Phytoplasma brasiliense” in Catharanthus roseus. Plant Disease, 85 (11), 1209. doi: 10.1094/PDIS.2001.85.11.1209C
  • Okuda S., Prince J.P., Davis R.E., Dally E.L., Lee I.M., Mogen B., Kato S., 1997. Two groups of phytoplasma from Japan distinguished on the basis of amplification and restriction analysis of 16S rDNA. Plant Disease, 81 (3), 301–305. doi: 10.1094/PDIS.1997.81.3.301
  • Omar A.F., Alsohim A.S., Dumonceaux T.J., Pérez-López E., 2020. Molecular characterization of 'Candidatus Phytoplasma australasia' 16SrII subgroups associated with eggplant, cabbage, beetroot, and celery in Saudi Arabia, Crop Protection, 127, 104970. https://doi.org/10.1016/j.cropro.2019.104970
  • Omar A.F., Foissac X., 2012. Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. European Journal of Plant Pathology, 133, 353–360. doi: 10.1007/s10658-011-9908-x
  • Quaglino F., Sanna F., Moussa A., Faccincani M., Passera A., Casati P., Bianco P.A., Mori N., 2019. Identification and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine. Scientific Reports, 9 (1), 19522. https://doi.org/10.1038/s41598-019-56076-9
  • Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P.A., Wei W., Davis R.E. 2013. “Candidatus Phytoplasma solani”, a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63 (Pt 8), 2879–2894. doi:10.1099/ijs.0.044750-0
  • Randa Zelyüt F., Ertunç F., Şenal D., 2022. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Protection Bulletin, 62 (1), 24-33. https://doi.org/10.16955/bitkorb.1014427
  • Rao G.P., Kumar M., 2017. World status of phytoplasma diseases associated with eggplant. Crop Protection, 96, 22–29. https://doi.org/10.1016/j.cropro.2017.01.005
  • Rao G.P., Mall S., Raj S.K., Snehi S.K., 2011. Phytoplasma diseases affecting various plant species in India. Acta Phytopathologica et Entomologica Hungarica, 46 (1), 59-99. https://doi.org/10.1556/aphyt.46.2011.1.7
  • Šafárˇová D., Zemánek T., Válová P., Navrátil M., 2016. ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. International Journal of Systematic and Evolutionary Bacteriology, 66 (4), 1745–1753. doi: 10.1099/ijsem.0.000937
  • Saitou N., Nei M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406-425. doi: 10.1093/oxfordjournals.molbev.a040454
  • Schneider B., Seemüller E., 2009. Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP- and sequence analyses of the hflB gene. Journal of Plant Pathology, 91 (1), 103–112. doi: 10.4454/jpp.v91i1.630
  • Schneider B., Seemüller E., 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Applied and Environmental Microbiology, 60 (9), 3409-3412. doi: 10.1128/aem.60.9.3409-3412.1994
  • Sertkaya G., Martini M., Musetti R., Osler R., 2007. Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bulletin of Insectology, 60 (2), 141–142.
  • Siampour M., Izadpanah K., Galettob L., Salehic M., Marzachi, C., 2013. Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology, 62, 452-459. doi: 10.1111/J.1365-3059.2012.02662.X
  • Siddique A.B.M., Agrawal G.K., Alam N., Krishina Reddy M., 2001. Electron microscopy and molecular characterization of phytoplasmas associated with little leaf disease of brinjal (Solanum melongena L.) and periwinkle (Catharanthus roseus) in Bangladesh. Journal of Phytopathology, 149 (5), 237–244. https://doi.org/10.1046/j.1439-0434.2001.00590.x
  • Tamura K., Stecher G., Kumar S., 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38 (7), 3022-3027 https://doi.org/10.1093/molbev/msab120
  • Tedeschi R., Alma A., 2006. Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Disease, 90 (3), 284–290. https://doi.org/10.1094/PD-90-0284
  • Tohidi Z., Salehi M., Ghasemi S., Khanchezar A., Shahamiri S.M., 2015. Association of a 16SrIX-C phytoplasma with eggplant phyllody in Iran. Journal of Crop Protection, 4 (2), 247–256.
  • TUİK, 2023. Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr. (accessed date: 15.03.2025).
  • Usta M., Guller A., Sipahioğlu H.M., 2018. Molecular analysis of ‘Canditatus Phytoplasma trifolii’ and ‘Canditatus Phytoplasma solani’ associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology, 20, 1991-1996. https://doi.org/10.17957/IJAB/15.0721
  • Usta M., Güller A., Sipahioğlu H.M., 2022. Detection, in silico analysis and molecular diversity of phytoplasmas from solanaceous crops in Turkey. Plant Protection Science, 58 (1), 31–39. https://doi.org/10.17221/115/2021-PPS
  • Valiunas D., Jomantiene R., Davis R.E., 2013. Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny. International Journal of Systematic and Evolutionary Microbiology, 63 (Pt 10), 3904–3914. doi: 10.1099/ijs.0.051912-0
  • Venkataravanappa V., Prasanna H.C., Lakshminarayana C.N., Reddy M.K., 2018. Molecular detection and characterization of phytoplasma in association with begomovirus in eggplant. Acta Virologica, 62 (3), 246-258. doi: 10.4149/av_2018_218
  • Wang R., Bai B., Li D., Wang J., Huang W., Wu Y., Zhao L., 2024. Phytoplasma: a plant pathogen that cannot be ignored in agricultural production-research progress and outlook. Molecular Plant Pathology, 25 (2). e13437. doi: 10.1111/mpp.13437
  • Wei W., Lee M., Davis R.E., Suo X., Zhao Y., 2008. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. International Journal of Systematic and Evolutionary Microbiology, 58 (10), 2368-2377. https://doi.org/10.1099/ijs.0.65868-0
  • Weintraub P.G., Beanland L., 2006. Insect vectors of phytoplasmas. Annual Review of Entomology, 51 (1), 91-111. doi: 10.1146/annurev.ento.51.110104.151039
  • Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Van Etten J., 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. Journal of Bacteriology, 171 (12), 6455-6467. 10.1128/jb.171.12.6455-6467.1989
  • Yadav V., Mahadevakumar S., Tejaswini G.S., Shilpa N., Amruthavalli C., Janardhana G.R., 2016. First report of 16SrII-D phytoplasma associated with eggplant big bud (Solanum melongena L.) in India. Plant Disease, 100, 517. doi: 10.1094/PDIS-07-15-0761-PDN
  • Zelyüt F.R., Santosa A.I., Karanfil A., 2022. ‘Candidatus Phytoplasma solani’ (subgroup 16SrXII-A) associated with Nicotiana tabacum leaf abnormality in Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 19 (3), 571-581. https://doi.org/10.33462/jotaf.1028263
  • Zelyüt F.R., 2023. Genetic diversity and molecular variability of Candidatus Phytoplasma solani based on multilocus sequence typing analysis in tomato plantations of western Turkey. Physiological and Molecular Plant Pathology, 127, 102120. https://doi.org/10.1016/j.pmpp.2023.102120
There are 83 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Article
Authors

Zehra Mezreli 0000-0003-2073-0636

Çiğdem Ulubaş Serçe 0000-0001-5337-5883

Early Pub Date March 27, 2025
Publication Date April 1, 2025
Submission Date September 19, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2025 Volume: 65 Issue: 1

Cite

APA Mezreli, Z., & Ulubaş Serçe, Ç. (2025). Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province. Plant Protection Bulletin, 65(1), 50-58. https://doi.org/10.16955/bitkorb.1552488
AMA Mezreli Z, Ulubaş Serçe Ç. Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province. Plant Protection Bulletin. April 2025;65(1):50-58. doi:10.16955/bitkorb.1552488
Chicago Mezreli, Zehra, and Çiğdem Ulubaş Serçe. “Identification of ‘Candidatus Phytoplasma solani’ Phytoplasma-Associated Diseases in Eggplants Exhibiting Abnormal Flower Structure (phyllody and Virescence) and witches’ Broom Symptoms in Şanlıurfa Province”. Plant Protection Bulletin 65, no. 1 (April 2025): 50-58. https://doi.org/10.16955/bitkorb.1552488.
EndNote Mezreli Z, Ulubaş Serçe Ç (April 1, 2025) Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province. Plant Protection Bulletin 65 1 50–58.
IEEE Z. Mezreli and Ç. Ulubaş Serçe, “Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province”, Plant Protection Bulletin, vol. 65, no. 1, pp. 50–58, 2025, doi: 10.16955/bitkorb.1552488.
ISNAD Mezreli, Zehra - Ulubaş Serçe, Çiğdem. “Identification of ‘Candidatus Phytoplasma solani’ Phytoplasma-Associated Diseases in Eggplants Exhibiting Abnormal Flower Structure (phyllody and Virescence) and witches’ Broom Symptoms in Şanlıurfa Province”. Plant Protection Bulletin 65/1 (April 2025), 50-58. https://doi.org/10.16955/bitkorb.1552488.
JAMA Mezreli Z, Ulubaş Serçe Ç. Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province. Plant Protection Bulletin. 2025;65:50–58.
MLA Mezreli, Zehra and Çiğdem Ulubaş Serçe. “Identification of ‘Candidatus Phytoplasma solani’ Phytoplasma-Associated Diseases in Eggplants Exhibiting Abnormal Flower Structure (phyllody and Virescence) and witches’ Broom Symptoms in Şanlıurfa Province”. Plant Protection Bulletin, vol. 65, no. 1, 2025, pp. 50-58, doi:10.16955/bitkorb.1552488.
Vancouver Mezreli Z, Ulubaş Serçe Ç. Identification of ‘Candidatus Phytoplasma solani’ phytoplasma-associated diseases in eggplants exhibiting abnormal flower structure (phyllody and virescence) and witches’ broom symptoms in Şanlıurfa province. Plant Protection Bulletin. 2025;65(1):50-8.

136481365013649