Research Article
BibTex RIS Cite
Year 2022, , 812 - 819, 30.09.2022
https://doi.org/10.17798/bitlisfen.1106917

Abstract

References

  • C. A. Balanis, Antenna theory: Analysis and design, 4th ed. Hoboken, NJ: Wiley-Blackwell, 2016.
  • J. Sosa-Pedroza, F. Martinez-zuñiga, and M. Enciso-Aguilar, "Planar Antennas for Satellite Communications", in Satellite Communications. London, United Kingdom: IntechOpen, 2010 [Online]. Available: https://www.intechopen.com/chapters/11711 doi: 10.5772/intechopen.83939.
  • H. Gutton and G. Baissinot, “Flat Aerial for Ultra High Frequencies,” French Patent No. 703113, 1995.
  • R. Munson, “Conformal microstrip antennas and microstrip phased arrays,” IRE trans. antennas propag., vol. 22, no. 1, pp. 74–78, 1974.
  • S. Weigand, G. H. Huff, K. H. Pan, and J. T. Bernhard, “Analysis and design of broad-band single-layer rectangular u-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 457–468, 2003.
  • A. A. Deshmukh and G. Kumar, “Compact broadband U-slot-loaded rectangular microstrip antennas,” Microw. Opt. Technol. Lett., vol. 46, no. 6, pp. 556–559, 2005.
  • A. Khidre, K.-F. Lee, A. Z. Elsherbeni, and F. Yang, “Wide band dual-beam U-slot microstrip antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1415–1418, 2013.
  • P. N. Shinde and J. P. Shinde, “Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications,” Int. J. Electron. Commun., vol. 69, no. 10, pp. 1489–1494, 2015.
  • N. Ojaroudi and M. Ojaroudi, “Bandwidth enhancement of an ultra-wideband printed slot antenna with WLAN band-notched function,” Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1448–1451, 2013.
  • Y. Sung, “Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1712–1716, 2012.
  • K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” IEE Proc. - Microw. Antennas Propag., vol. 144, no. 5, p. 354, 1997.
  • Bayer Keskin, S. E., B.Aymaz R., “Design and Analysis of a New Wideband Microstrip Patch Antenna for ISM Applications”, Internatıonal conference on Lıfe And Engıneerıng Scıences, june 27-29, 2019, pp.126
  • A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Rectangular slot antenna with patch stub for ultra wideband applications and phased array systems,” Electromagn. Waves (Camb.), vol. 53, pp. 227–237, 2005.
  • A. K. Arya, M. V. Kartikeyan, and A. Patnaik, “Defected ground structure in the perspective of microstrip antennas: A review,” Frequenz, vol. 64, no. 5–6, 2010.
  • W.-L. Chen, G.-M. Wang, and C.-X. Zhang, “Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 2176–2179, 2009.

The Development of Broadband Microstrip Patch Antenna for Wireless Applications

Year 2022, , 812 - 819, 30.09.2022
https://doi.org/10.17798/bitlisfen.1106917

Abstract

The small volume of microstrip antennas has low production costs and easy production, which has accelerated the work in this area. The disadvantages are narrow bandwidth and low gain. In wireless communication, antennas with low return loss and high bandwidth are required. The bandwidth and power gain of the microstrip patch antennas should be increased optimally. This article presents the design of the broadband microstrip patch antenna operating in the ISM 2.4 GHz band (2400-2485 MHz). The study includes three-dimensional antenna model, simulation phase and fabrication / measurement phase. For the low cost of the antenna, FR-4 with the relative dielectric constant 4.3 and the loss tangent tan 0.02 is preferred as the substrate material. Dielectric material thickness is determined as 1.6 mm. The length of the feed line and the dimensions of the rectangular patch were found by mathematical calculations with the transmission line model. There are slots on the antenna, which is a very simple method in order to improve the bandwidth, gain and directivity parameters of the antenna. In the article, four different designs are presented, the results are compared and the proposed antenna has 979 MHz bandwidth and 2.68 dBi directivity gain at -10 dB at the resonance frequency of 2.316 GHz. The changes made in the antenna design have improved the results such as gain and bandwidth compared to the conventional microstrip patch antenna. The proposed antenna is suitable for use in mobile communication.

References

  • C. A. Balanis, Antenna theory: Analysis and design, 4th ed. Hoboken, NJ: Wiley-Blackwell, 2016.
  • J. Sosa-Pedroza, F. Martinez-zuñiga, and M. Enciso-Aguilar, "Planar Antennas for Satellite Communications", in Satellite Communications. London, United Kingdom: IntechOpen, 2010 [Online]. Available: https://www.intechopen.com/chapters/11711 doi: 10.5772/intechopen.83939.
  • H. Gutton and G. Baissinot, “Flat Aerial for Ultra High Frequencies,” French Patent No. 703113, 1995.
  • R. Munson, “Conformal microstrip antennas and microstrip phased arrays,” IRE trans. antennas propag., vol. 22, no. 1, pp. 74–78, 1974.
  • S. Weigand, G. H. Huff, K. H. Pan, and J. T. Bernhard, “Analysis and design of broad-band single-layer rectangular u-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 457–468, 2003.
  • A. A. Deshmukh and G. Kumar, “Compact broadband U-slot-loaded rectangular microstrip antennas,” Microw. Opt. Technol. Lett., vol. 46, no. 6, pp. 556–559, 2005.
  • A. Khidre, K.-F. Lee, A. Z. Elsherbeni, and F. Yang, “Wide band dual-beam U-slot microstrip antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1415–1418, 2013.
  • P. N. Shinde and J. P. Shinde, “Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications,” Int. J. Electron. Commun., vol. 69, no. 10, pp. 1489–1494, 2015.
  • N. Ojaroudi and M. Ojaroudi, “Bandwidth enhancement of an ultra-wideband printed slot antenna with WLAN band-notched function,” Microw. Opt. Technol. Lett., vol. 55, no. 7, pp. 1448–1451, 2013.
  • Y. Sung, “Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1712–1716, 2012.
  • K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” IEE Proc. - Microw. Antennas Propag., vol. 144, no. 5, p. 354, 1997.
  • Bayer Keskin, S. E., B.Aymaz R., “Design and Analysis of a New Wideband Microstrip Patch Antenna for ISM Applications”, Internatıonal conference on Lıfe And Engıneerıng Scıences, june 27-29, 2019, pp.126
  • A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Rectangular slot antenna with patch stub for ultra wideband applications and phased array systems,” Electromagn. Waves (Camb.), vol. 53, pp. 227–237, 2005.
  • A. K. Arya, M. V. Kartikeyan, and A. Patnaik, “Defected ground structure in the perspective of microstrip antennas: A review,” Frequenz, vol. 64, no. 5–6, 2010.
  • W.-L. Chen, G.-M. Wang, and C.-X. Zhang, “Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 2176–2179, 2009.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Cem Güler 0000-0002-6631-7559

Sena Esen Bayer Keskin 0000-0001-8309-3393

Rukiye B.aymaz 0000-0002-1683-6190

Publication Date September 30, 2022
Submission Date April 21, 2022
Acceptance Date August 5, 2022
Published in Issue Year 2022

Cite

IEEE C. Güler, S. E. Bayer Keskin, and R. B.aymaz, “The Development of Broadband Microstrip Patch Antenna for Wireless Applications”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 3, pp. 812–819, 2022, doi: 10.17798/bitlisfen.1106917.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS