Research Article
BibTex RIS Cite
Year 2022, , 902 - 910, 30.09.2022
https://doi.org/10.17798/bitlisfen.1139679

Abstract

Supporting Institution

Milli Eğitim Bakanlığo

References

  • [1] G. De Portu, L. Micele, Y. Sekiguchi, and G. Pezzotti, “Measurement of residual stress distributions in Al 2 O 3 / 3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy,” Acta Mater., vol. 53, no. 5, pp. 1511–1520, 2005.
  • [2] P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation,” J. Am. Ceram. Soc., vol. 48, no. 8, pp. 1940–1948, 1997.
  • [3] H. Z. Wu, S. G. Roberts, and B. Derby, “Residual stress distributions around indentations and scratches in polycrystalline Al 2 O 3 and Al 2 O 3 / SiC nanocomposites measured using fluorescence probes,” Acta Mater., vol. 56, no. 1, pp. 140–149, 2008.
  • [4] B. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic Luminescent Materials : 100 Years of Research and Application,” Adv. Funct. Mater., vol. 13, no. 7, pp. 511–516, 2003.
  • [5] A. Edgar, “Luminescent,” in Springer Handbook of Electronic and Photonic Materials, 2nd Editio., S. Kasap and P. Capper, Eds. Springer, 2017, pp. 997–1012.
  • [6] J. He and D. R. Clarke, “Determination of the Piezospectroscopy Coefficients for Chromium-Doped Sapphire,” J. Am. Ceram. Soc., vol. 78, no. 5, pp. 1347–1353, 1995.
  • [7] L. Grabner, “Spectroscopic technique for the measurement of residual stress in sintered Al2O3,” J. Appl. Physic, vol. 580, no. 1978, pp. 1–5, 1996.
  • [8] D. Di Marco et al., “Journal of the European Ceramic Society Dielectric properties of pure alumina from 8 GHz to 73 GHz,” J. Eur. Ceram. Soc., vol. 36, no. 14, pp. 3355–3361, 2016.
  • [9] P. Auerkari, “Mechanical and physical properties of engineering alumina ceramics,” Espoo, 1996.
  • [10] H. N. Kim, H. J. Park, and G. M. Choi, “The effect of alumina addition on the electrical conductivity of Gd-doped ceria,” J. Electroceramics, vol. 17, no. 2–4, pp. 793–7982, 2006.
  • [11] R. Chockalingam, S. Chockalingam, and V. R. W. Amarakoon, “The electrical properties of microwave sintered gadolinia doped ceria – alumina nano-composite electrolyte,” J. Power Sources, vol. 196, no. 4, pp. 1808–1817, 2011.
  • [12] J. Lee, K. Choi, B. Ryu, B. Shin, and I. Kim, “Effects of alumina additions on sintering behavior of gadolinia-doped ceria,” Ceram. Int., vol. 30, no. 5, pp. 807–812, 2004.
  • [13] S. Huang, J. G. P. Binner, B. Vaidhyanathan, and R. I. Todd, “Quantitative analysis of the residual stress and dislocation density distributions around indentations in alumina and zirconia toughened alumina ( ZTA ) ceramics,” J. Eur. Ceram. Soc., vol. 34, no. 3, pp. 753–763, 2014.
  • [14] G. A. Myers, C. A. Michaels, and R. F. Cook, “Acta Materialia Quantitative mapping of stress heterogeneity in polycrystalline alumina using hyperspectral fl uorescence microscopy,” Acta Mater., vol. 106, pp. 272–282, 2016.
  • [15] C. A. Michaels and R. F. Cook, “Determination of residual stress distributions in polycrystalline alumina using fl uorescence microscopy,” Mater. Des., vol. 107, pp. 478–490, 2016.
  • [16] M. Materials, S. Centre, and G. Street, “Fragmentation in alumina fibre reinforced epoxy model composites monitored using fluorescence spectroscopy,” J. Mater. Sci., vol. 31, no. 13, pp. 3349–3359, 1996.
  • [17] Q. Ma and D. R. Clarke, “Stress Measurement in Single-Crystal and Polycrystalline Ceramics Using Their Optical Fluorescence,” J. Am. Ceram. Soc., vol. 76, no. 6, pp. 1433–1440, 1993.
  • [18] R. . Todd, A. R. Boccaccini, R. Sinclair, R. B. Yallee, and R. J. Young, “Thermal residual stresses and their toughening effect in Al2O3 platelet reinforced glass,” Acta Mater., vol. 47, no. 11, pp. 3233–3240, 1999.
  • [19] E. Feher and M. D. Sturge, “Effect of stress on the trigonal splittings of d3 ions in sapphire (a-Al2O3),” Phys. Rev., vol. 172, no. 2, pp. 243–249, 1968.
  • [20] J. He, I. . Beyerlein, and D. . Clarke, “Load transfer from broken fibers in continuous fiber Al2O3-Al composites and dependence on local volume fraction,” J. Mech. Phys. Solids, vol. 47, pp. 465–502, 1999.
  • [21] R. G. Munro, G. J. Piermarini, and S. Block, “Model line shape analysis for the ruby R lines used for pressure measurement,” J. Appl. Physic, vol. 57, no. 2, pp. 165–169, 1985.
  • [22] D. D. Ragan, D. R. Clarke, and D. Schiferl, “Silicone fluid as a high-pressure medium in diamond anvil cells,” Am. Inst. Physic, vol. 2, no. 1996, pp. 494–496, 67AD.
  • [23] Y. Sayan, V. Venkatesan, E. Guk, H. Wu, and J. S. Kim, “Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell,” Int. J. Appl. Ceram. Technol., no. April, pp. 1–13, 2018.
  • [24] A. Atkinson and A. Selçuk, “Residual stress and fracture of laminated ceramic membranes,” Acta Mater., vol. 47, no. 3, pp. 867–874, 1999.
  • [25] A. Selçuk and A. Atkinson, “Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC),” J. Eur. Ceram. Soc., vol. 17, no. 12, pp. 1523–1532, 1997.
  • [26] “Maryland Tape Casting.” [Online]. Available: http://www.marylandtapecasting.com/.
  • [27] S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells:Fundementals, design and Applications. Oxford: Elsevier Advanced Technology, 2003.
  • [28] S. Bandopadhyay, “Evaluation of elastic properties of reduced NiO-8YSZ anode- supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments,” J. Mater. Sci. Lett., no. July, pp. 778–785, 2009.
  • [29] K. Raju, S. Kim, J. H. Yu, S. H. Kim, Y. H. Seong, and I. S. Han, “Rietveld refinement and estimation of residual stress in GDC-LSCF oxygen transport membrane ceramic composites,” Ceram. Int., vol. 44, no. February, pp. 10293–10298, 2018.
  • [30] Y. Chou, J. W. Stevenson, T. R. Armstrong, and L. R. Pederson, “Mechanical Properties of LSCF Mixed-Conducting Perovskites Made by the Combustion Synthesis Technique,” J. Am. Ceram. Soc., vol. 83, pp. 1457–1464, 2000.

Residual Stress Measurement of a Single-step Sintered Planar Anode Supported SC-SOFC Using Fluorescence Spectroscopy

Year 2022, , 902 - 910, 30.09.2022
https://doi.org/10.17798/bitlisfen.1139679

Abstract

The fluorescence spectroscopy technique was used to measure the residual stress between the cathode and electrolyte of an anode supported planar single-chamber solid oxide fuel cell. The cell was made of (NiO-CGO) :(CGO) :(LSCF-CGO), as anode:electrolyte:cathode and the test was carried out after sintering at room temperature. The measured stress between these layers arises from the sintering stress caused by differential shrinkage from layers during sintering and the thermal expansion co-efficient mismatch between the layers during cooling. Therefore, the residual stress in the cathode and electrolyte layer of the cell due to co-efficient of thermal expansion mismatch during cooling was calculated analytically so as to find sintering stress. According to findings a maximum compressive residual stress of -1084 MPa occurred at the place contiguous to electrolyte layer. The estimated residual stresses in the cell’s cathode and electrolyte layer owing to CTE mismatch for the duration of cooling was calculated as -324 MPa and 15.96 MPa, respectfully. Furthermore, total mean residual compressive stress between cathode and electrolyte was obtained from fluorescence spectroscopy as -703.795. Thus, the main contribution of this residual stress is the stress growth during sintering (-395.755 MPa) due to different shrinkage behavior of adjacent layers.

References

  • [1] G. De Portu, L. Micele, Y. Sekiguchi, and G. Pezzotti, “Measurement of residual stress distributions in Al 2 O 3 / 3Y-TZP multilayered composites by fluorescence and Raman microprobe piezo-spectroscopy,” Acta Mater., vol. 53, no. 5, pp. 1511–1520, 2005.
  • [2] P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation,” J. Am. Ceram. Soc., vol. 48, no. 8, pp. 1940–1948, 1997.
  • [3] H. Z. Wu, S. G. Roberts, and B. Derby, “Residual stress distributions around indentations and scratches in polycrystalline Al 2 O 3 and Al 2 O 3 / SiC nanocomposites measured using fluorescence probes,” Acta Mater., vol. 56, no. 1, pp. 140–149, 2008.
  • [4] B. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic Luminescent Materials : 100 Years of Research and Application,” Adv. Funct. Mater., vol. 13, no. 7, pp. 511–516, 2003.
  • [5] A. Edgar, “Luminescent,” in Springer Handbook of Electronic and Photonic Materials, 2nd Editio., S. Kasap and P. Capper, Eds. Springer, 2017, pp. 997–1012.
  • [6] J. He and D. R. Clarke, “Determination of the Piezospectroscopy Coefficients for Chromium-Doped Sapphire,” J. Am. Ceram. Soc., vol. 78, no. 5, pp. 1347–1353, 1995.
  • [7] L. Grabner, “Spectroscopic technique for the measurement of residual stress in sintered Al2O3,” J. Appl. Physic, vol. 580, no. 1978, pp. 1–5, 1996.
  • [8] D. Di Marco et al., “Journal of the European Ceramic Society Dielectric properties of pure alumina from 8 GHz to 73 GHz,” J. Eur. Ceram. Soc., vol. 36, no. 14, pp. 3355–3361, 2016.
  • [9] P. Auerkari, “Mechanical and physical properties of engineering alumina ceramics,” Espoo, 1996.
  • [10] H. N. Kim, H. J. Park, and G. M. Choi, “The effect of alumina addition on the electrical conductivity of Gd-doped ceria,” J. Electroceramics, vol. 17, no. 2–4, pp. 793–7982, 2006.
  • [11] R. Chockalingam, S. Chockalingam, and V. R. W. Amarakoon, “The electrical properties of microwave sintered gadolinia doped ceria – alumina nano-composite electrolyte,” J. Power Sources, vol. 196, no. 4, pp. 1808–1817, 2011.
  • [12] J. Lee, K. Choi, B. Ryu, B. Shin, and I. Kim, “Effects of alumina additions on sintering behavior of gadolinia-doped ceria,” Ceram. Int., vol. 30, no. 5, pp. 807–812, 2004.
  • [13] S. Huang, J. G. P. Binner, B. Vaidhyanathan, and R. I. Todd, “Quantitative analysis of the residual stress and dislocation density distributions around indentations in alumina and zirconia toughened alumina ( ZTA ) ceramics,” J. Eur. Ceram. Soc., vol. 34, no. 3, pp. 753–763, 2014.
  • [14] G. A. Myers, C. A. Michaels, and R. F. Cook, “Acta Materialia Quantitative mapping of stress heterogeneity in polycrystalline alumina using hyperspectral fl uorescence microscopy,” Acta Mater., vol. 106, pp. 272–282, 2016.
  • [15] C. A. Michaels and R. F. Cook, “Determination of residual stress distributions in polycrystalline alumina using fl uorescence microscopy,” Mater. Des., vol. 107, pp. 478–490, 2016.
  • [16] M. Materials, S. Centre, and G. Street, “Fragmentation in alumina fibre reinforced epoxy model composites monitored using fluorescence spectroscopy,” J. Mater. Sci., vol. 31, no. 13, pp. 3349–3359, 1996.
  • [17] Q. Ma and D. R. Clarke, “Stress Measurement in Single-Crystal and Polycrystalline Ceramics Using Their Optical Fluorescence,” J. Am. Ceram. Soc., vol. 76, no. 6, pp. 1433–1440, 1993.
  • [18] R. . Todd, A. R. Boccaccini, R. Sinclair, R. B. Yallee, and R. J. Young, “Thermal residual stresses and their toughening effect in Al2O3 platelet reinforced glass,” Acta Mater., vol. 47, no. 11, pp. 3233–3240, 1999.
  • [19] E. Feher and M. D. Sturge, “Effect of stress on the trigonal splittings of d3 ions in sapphire (a-Al2O3),” Phys. Rev., vol. 172, no. 2, pp. 243–249, 1968.
  • [20] J. He, I. . Beyerlein, and D. . Clarke, “Load transfer from broken fibers in continuous fiber Al2O3-Al composites and dependence on local volume fraction,” J. Mech. Phys. Solids, vol. 47, pp. 465–502, 1999.
  • [21] R. G. Munro, G. J. Piermarini, and S. Block, “Model line shape analysis for the ruby R lines used for pressure measurement,” J. Appl. Physic, vol. 57, no. 2, pp. 165–169, 1985.
  • [22] D. D. Ragan, D. R. Clarke, and D. Schiferl, “Silicone fluid as a high-pressure medium in diamond anvil cells,” Am. Inst. Physic, vol. 2, no. 1996, pp. 494–496, 67AD.
  • [23] Y. Sayan, V. Venkatesan, E. Guk, H. Wu, and J. S. Kim, “Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell,” Int. J. Appl. Ceram. Technol., no. April, pp. 1–13, 2018.
  • [24] A. Atkinson and A. Selçuk, “Residual stress and fracture of laminated ceramic membranes,” Acta Mater., vol. 47, no. 3, pp. 867–874, 1999.
  • [25] A. Selçuk and A. Atkinson, “Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC),” J. Eur. Ceram. Soc., vol. 17, no. 12, pp. 1523–1532, 1997.
  • [26] “Maryland Tape Casting.” [Online]. Available: http://www.marylandtapecasting.com/.
  • [27] S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells:Fundementals, design and Applications. Oxford: Elsevier Advanced Technology, 2003.
  • [28] S. Bandopadhyay, “Evaluation of elastic properties of reduced NiO-8YSZ anode- supported bi-layer SOFC structures at elevated temperatures in ambient air and reducing environments,” J. Mater. Sci. Lett., no. July, pp. 778–785, 2009.
  • [29] K. Raju, S. Kim, J. H. Yu, S. H. Kim, Y. H. Seong, and I. S. Han, “Rietveld refinement and estimation of residual stress in GDC-LSCF oxygen transport membrane ceramic composites,” Ceram. Int., vol. 44, no. February, pp. 10293–10298, 2018.
  • [30] Y. Chou, J. W. Stevenson, T. R. Armstrong, and L. R. Pederson, “Mechanical Properties of LSCF Mixed-Conducting Perovskites Made by the Combustion Synthesis Technique,” J. Am. Ceram. Soc., vol. 83, pp. 1457–1464, 2000.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Yunus Sayan 0000-0002-0871-6842

Jung-sik Kim This is me 0000-0002-3696-7251

Houzheng Wu This is me 0000-0002-7628-3890

Publication Date September 30, 2022
Submission Date July 2, 2022
Acceptance Date September 23, 2022
Published in Issue Year 2022

Cite

IEEE Y. Sayan, J.-s. Kim, and H. Wu, “Residual Stress Measurement of a Single-step Sintered Planar Anode Supported SC-SOFC Using Fluorescence Spectroscopy”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 3, pp. 902–910, 2022, doi: 10.17798/bitlisfen.1139679.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS