Research Article
BibTex RIS Cite

Antioxidant and Antimicrobial Capacity of Quinic Acid

Year 2022, , 1018 - 1025, 31.12.2022
https://doi.org/10.17798/bitlisfen.1167047

Abstract

Recently, agents with natural antioxidant and antimicrobial properties have been popularly studied. For this purpose, phenolic compounds, terpenes, and organic acids are examined in their antioxidant and antimicrobial properties. Of these, organic acids are increasingly being used in pharmacology, medicine, food, and industry. Quinic acid is a natural organic compound found in many edible fruits and plants. In this study, the antioxidant effect of quinic acid, which has the structure of cyclohexane carboxylic acid, was determined in vitro using seven different methods (DPPH, ABTS, CUPRAC, DMPD, FRAP, Fe3+ reduction, and Total antioxidant method). In addition, its antimicrobial effect on fungi (C. albicans), gram-positive bacteria (S. aureus, S. pyogenes), and gram-negative bacteria (E. coli, K. pneumoniae, and P. aeruginosa) were determined by the disk diffusion method. As a result, it was found that quinic acid has broad-spectrum antimicrobial properties, but its antioxidant properties are too low to be highlighted. While its antimicrobial activity was quite good, especially on K. pneumoniae E. coli, S. aureus, S. Pyogenes, and P. aeruginosa, it did not show any effect on C. albicans. Although the antioxidant property of quinic acid is low, it showed more antioxidant properties in the DMPD method, which is one of these methods, because it dissolves very well in water.

Supporting Institution

Dicle University Scientific Research Projects Coordination Unit.

Project Number

ZGEF.20.001

Thanks

We would like to thank Dicle University Scientific Research Projects Coordination Unit for their project support.

References

  • [1] G. W. Chapman and R. J. Horvat, “Determination of Nonvolatile Acids and Sugars from Fruits and Sweet Potato Extracts by Capillary GLC and GLC/MS,” J Agric Food Chem, vol. 37, no. 4, pp. 947–950, Jul. 1989, doi: 10.1021/JF00088A026/ASSET/JF00088A026.FP.PNG_V03.
  • [2] N. Cinkilic et al., “Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro,” Food Chem Toxicol, vol. 53, pp. 359–363, Mar. 2013, doi: 10.1016/J.FCT.2012.12.008.
  • [3] S. S. Dhondge, P. H. Shende, L. J. Paliwal, and D. W. Deshmukh, “Volumetric and acoustic study of aqueous binary mixtures of quinine hydrochloride, guanidine hydrochloride and quinic acid at different temperatures,” J Chem Thermodyn, vol. 81, pp. 34–43, Feb. 2015, doi: 10.1016/J.JCT.2014.09.011.
  • [4] S. A. Jang et al., “Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells,” Biomed Pharmacother, vol. 96, pp. 563–571, Dec. 2017, doi: 10.1016/J.BIOPHA.2017.10.021.
  • [5] A. Arya et al., “Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study,” Food Chem Toxicol, vol. 71, pp. 183–196, 2014, doi: 10.1016/J.FCT.2014.06.010.
  • [6] J. S. Bonita, M. Mandarano, D. Shuta, and J. Vinson, “Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies,” Pharmacol Res, vol. 55, no. 3, pp. 187–198, Mar. 2007, doi: 10.1016/J.PHRS.2007.01.006.
  • [7] J. Boyer and R. H. Liu, “Apple phytochemicals and their health benefits,” Nutr J, vol. 3, no. 1, pp. 1–15, Dec. 2004, doi: 10.1186/1475-2891-3-5/FIGURES/4.
  • [8] S. Y. Lee, E. Moon, S. Y. Kim, and K. R. Lee, “Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia,” Bioorg Med Chem Lett, vol. 23, no. 7, pp. 2140–2144, Apr. 2013, doi: 10.1016/J.BMCL.2013.01.115.
  • [9] O. Mortelé, J. Jorissen, I. Spacova, S. Lebeer, A. L. N. van Nuijs, and N. Hermans, “Demonstrating the involvement of an active efflux mechanism in the intestinal absorption of chlorogenic acid and quinic acid using a Caco-2 bidirectional permeability assay,” Food Funct, vol. 12, no. 1, pp. 417–425, Jan. 2021, doi: 10.1039/D0FO02629H.
  • [10] R. W. Pero, H. Lund, and T. Leanderson, “Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide,” Phytother Res, vol. 23, no. 3, pp. 335–346, Mar. 2009, doi: 10.1002/PTR.2628.
  • [11] R. W. Pero and H. Lund, “Dietary quinic acid supplied as the nutritional supplement AIO + AC-11® leads to induction of micromolar levels of nicotinamide and tryptophan in the urine,” Phytother Res, vol. 25, no. 6, pp. 851–857, Jun. 2011, doi: 10.1002/PTR.3348.
  • [12] L. Liu, Y. Liu, J. Zhao, X. Xing, C. Zhang, and H. Meng, “Neuroprotective Effects of D-(-)-Quinic Acid on Aluminum Chloride-Induced Dementia in Rats,” Evid Based Complement Alternat Med, vol. 2020, 2020, doi: 10.1155/2020/5602597.
  • [13] V. M. Victor, M. Rocha, and M. de La Fuente, “Immune cells: free radicals and antioxidants in sepsis,” Int Immunopharmacol, vol. 4, no. 3, pp. 327–347, Mar. 2004, doi: 10.1016/J.INTIMP.2004.01.020.
  • [14] A. M. Pisoschi and G. P. Negulescu, “Methods for Total Antioxidant Activity Determination: A Review,” Biochemistry & Analytical Biochemistry, vol. 01, no. 01, 2012, doi: 10.4172/2161-1009.1000106.
  • [15] L. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules 2019, Vol. 24, Page 3770, vol. 24, no. 20, p. 3770, Oct. 2019, doi: 10.3390/MOLECULES24203770.
  • [16] A. Das and K. Satyaprakash, “Antimicrobial properties of natural products: A review Annada Das and Kaushik Satyaprakash,” ~ 532 ~ The Pharma Innovation Journal, vol. 7, no. 6, pp. 532–537, 2018, Accessed: Aug. 15, 2022. [Online]. Available: www.thepharmajournal.com
  • [17] M. S. Blois, “Antioxidant Determinations by the Use of a Stable Free Radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958, Accessed: Aug. 15, 2022. [Online]. Available: https://www.academia.edu/3348938/Antioxidant_Determinations_by_the_Use_of_a_Stable_Free_Radical
  • [18] E. Bursal, E. Köksal, I. Gülçin, G. Bilsel, and A. C. Gören, “Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS,” Food Research International, vol. 51, no. 1, pp. 66–74, Apr. 2013, doi: 10.1016/J.FOODRES.2012.11.022.
  • [19] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radic Biol Med, vol. 26, no. 9–10, pp. 1231–1237, May 1999, doi: 10.1016/S0891-5849(98)00315-3.
  • [20] R. Apak et al., “Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay,” Molecules, vol. 12, no. 7, pp. 1496–1547, Jul. 2007, doi: 10.3390/12071496.
  • [21] I. Gülçin, “Antioxidant activity of food constituents: an overview,” Arch Toxicol, vol. 86, no. 3, pp. 345–391, Mar. 2012, doi: 10.1007/S00204-011-0774-2.
  • [22] V. Fogliano, V. Verde, G. Randazzo, and A. Ritieni, “Method for Measuring Antioxidant Activity and Its Application to Monitoring the Antioxidant Capacity of Wines,” J Agric Food Chem, vol. 47, no. 3, pp. 1035–1040, Mar. 1999, doi: 10.1021/JF980496S.
  • [23] M. Oyaizu, “Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine.,” The Japanese Journal of Nutrition and Dietetics, vol. 44, no. 6, pp. 307–315, 1986, doi: 10.5264/EIYOGAKUZASHI.44.307.
  • [24] G. C. Yen and H. Y. Chen, “Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity,” J Agric Food Chem, vol. 43, no. 1, pp. 27–32, Jan. 1995, doi: 10.1021/JF00049A007/ASSET/JF00049A007.FP.PNG_V03.
  • [25] National Committee for Clinical Laboratory Standards., NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7, April 1997 ed. Wayne PA USA: NCCLS, 1997.
  • [26] L. Ercan and M. Doğru, “Su Teresi (Nasturtium Officinale) Bitkisinin Antioksidan Kapasitesinin Belirlenmesi,” Institute of Science, Diyarbakır, 2021.
  • [27] B. Devi, S. Bais, and N. S. Gill, “A Review on quinic acid and its therapeutic potential,” Inventi Rapid: Molecular Pharmacology, vol. 3, pp. 1–6, 2017, Accessed: Aug. 15, 2022. [Online]. Available: https://inventi.in/journal/article/140/22705/Inventi%20Rapid:%20Molecular%20Pharm/Pharmaceutical
  • [28] R. W. Pero, H. Lund, and T. Leanderson, “Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide,” Phytother Res, vol. 23, no. 3, pp. 335–346, Mar. 2009, doi: 10.1002/PTR.2628.
  • [29] J. G. Uranga, N. S. Podio, D. A. Wunderlin, and A. N. Santiago, “Theoretical and Experimental Study of the Antioxidant Behaviors of 5-O-Caffeoylquinic, Quinic and Caffeic Acids Based on Electronic and Structural Properties,” ChemistrySelect, vol. 1, no. 13, pp. 4113–4120, Aug. 2016, doi: 10.1002/SLCT.201600582.
  • [30] R. Roesler, R. R. Catharino, L. G. Malta, M. N. Eberlin, and G. Pastore, “Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry,” Food Chem, vol. 104, no. 3, pp. 1048–1054, Jan. 2007, doi: 10.1016/J.FOODCHEM.2007.01.017.
  • [31] Y. J. Yang et al., “Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots,” Food Chem, vol. 138, no. 2–3, pp. 2057–2063, Jun. 2013, doi: 10.1016/J.FOODCHEM.2012.10.122.
  • [32] J. Bai et al., “In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus,” J Food Saf, vol. 38, no. 1, p. e12416, Feb. 2018, doi: 10.1111/JFS.12416.
  • [33] J. Bai, Y. Wu, Q. Bu, K. Zhong, and H. Gao, “Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches,” LWT, vol. 153, p. 112441, Jan. 2022, doi: 10.1016/J.LWT.2021.112441.
  • [34] L. Lu et al., “Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa,” Chinese Medicine (United Kingdom), vol. 16, no. 1, pp. 1–17, Dec. 2021, doi: 10.1186/S13020-021-00481-8/FIGURES/5.

Kinik Asitin Antioksidan ve Antimikrobiyal Kapasitesi

Year 2022, , 1018 - 1025, 31.12.2022
https://doi.org/10.17798/bitlisfen.1167047

Abstract

Son zamanlarda doğal antioksidan ve antimikrobiyal özellik gösteren ajanlar popüler bir şekilde araştırılmaktadır. Bu amaçla fenolik bileşikler, terpenler, organik asitler antioksidan ve antimikrobiyal özellikleri bakımından incelenmektedir. Bunlardan organik asitler farmakolojide, tıpta, gıdada ve endüstride giderek daha fazla kullanım alanı bulabilmektedir. Kinik asit pek çok yenebilir meyve ve bitkide bulunan doğal bir organik bileşiktir. Bu çalışmada sikloheksankarboksilik asit yapısında olan kinik asitin yedi farklı yöntem (DPPH, ABTS, CUPRAC, DMPD, FRAP, Fe3+ indirgeme ve Total antioksidan yöntemi) kullanarak in vitro olarak antioksidan aktivitesi tespit edilmiştir. Ayrıca fungi (C. albicans), gram- pozitif bakteriler (S. pyogenes, S. aureus) ve gram-negatif bakteriler (K. pneumoniae, P. aeruginosa ve E. coli) üzerindeki antimikrobiyal etkisi disk difüzyon yöntemi ile belirlenmiştir. Sonuç olarak kinik asitin geniş spektrumlu antimikrobiyal özelliğe sahip olduğu ancak antioksidan özelliğinin yok denecek kadar az olduğu bulunmuştur. Özellikle K. pneumoniae, E. coli, S. aureus, S. Pyogenes ve P. aeruginosa üzerinde antimikrobiyal etkinliği oldukça iyi iken C. albicans üzerinde etki göstermemiştir. Kinik asitin antioksidan özelliği düşük olmasına rağmen suda çok iyi çözünmesi nedeniyle bu yöntemlerden DMPD yönteminde daha fazla antioksidan özellik göstermiştir.

Project Number

ZGEF.20.001

References

  • [1] G. W. Chapman and R. J. Horvat, “Determination of Nonvolatile Acids and Sugars from Fruits and Sweet Potato Extracts by Capillary GLC and GLC/MS,” J Agric Food Chem, vol. 37, no. 4, pp. 947–950, Jul. 1989, doi: 10.1021/JF00088A026/ASSET/JF00088A026.FP.PNG_V03.
  • [2] N. Cinkilic et al., “Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro,” Food Chem Toxicol, vol. 53, pp. 359–363, Mar. 2013, doi: 10.1016/J.FCT.2012.12.008.
  • [3] S. S. Dhondge, P. H. Shende, L. J. Paliwal, and D. W. Deshmukh, “Volumetric and acoustic study of aqueous binary mixtures of quinine hydrochloride, guanidine hydrochloride and quinic acid at different temperatures,” J Chem Thermodyn, vol. 81, pp. 34–43, Feb. 2015, doi: 10.1016/J.JCT.2014.09.011.
  • [4] S. A. Jang et al., “Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells,” Biomed Pharmacother, vol. 96, pp. 563–571, Dec. 2017, doi: 10.1016/J.BIOPHA.2017.10.021.
  • [5] A. Arya et al., “Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study,” Food Chem Toxicol, vol. 71, pp. 183–196, 2014, doi: 10.1016/J.FCT.2014.06.010.
  • [6] J. S. Bonita, M. Mandarano, D. Shuta, and J. Vinson, “Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies,” Pharmacol Res, vol. 55, no. 3, pp. 187–198, Mar. 2007, doi: 10.1016/J.PHRS.2007.01.006.
  • [7] J. Boyer and R. H. Liu, “Apple phytochemicals and their health benefits,” Nutr J, vol. 3, no. 1, pp. 1–15, Dec. 2004, doi: 10.1186/1475-2891-3-5/FIGURES/4.
  • [8] S. Y. Lee, E. Moon, S. Y. Kim, and K. R. Lee, “Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia,” Bioorg Med Chem Lett, vol. 23, no. 7, pp. 2140–2144, Apr. 2013, doi: 10.1016/J.BMCL.2013.01.115.
  • [9] O. Mortelé, J. Jorissen, I. Spacova, S. Lebeer, A. L. N. van Nuijs, and N. Hermans, “Demonstrating the involvement of an active efflux mechanism in the intestinal absorption of chlorogenic acid and quinic acid using a Caco-2 bidirectional permeability assay,” Food Funct, vol. 12, no. 1, pp. 417–425, Jan. 2021, doi: 10.1039/D0FO02629H.
  • [10] R. W. Pero, H. Lund, and T. Leanderson, “Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide,” Phytother Res, vol. 23, no. 3, pp. 335–346, Mar. 2009, doi: 10.1002/PTR.2628.
  • [11] R. W. Pero and H. Lund, “Dietary quinic acid supplied as the nutritional supplement AIO + AC-11® leads to induction of micromolar levels of nicotinamide and tryptophan in the urine,” Phytother Res, vol. 25, no. 6, pp. 851–857, Jun. 2011, doi: 10.1002/PTR.3348.
  • [12] L. Liu, Y. Liu, J. Zhao, X. Xing, C. Zhang, and H. Meng, “Neuroprotective Effects of D-(-)-Quinic Acid on Aluminum Chloride-Induced Dementia in Rats,” Evid Based Complement Alternat Med, vol. 2020, 2020, doi: 10.1155/2020/5602597.
  • [13] V. M. Victor, M. Rocha, and M. de La Fuente, “Immune cells: free radicals and antioxidants in sepsis,” Int Immunopharmacol, vol. 4, no. 3, pp. 327–347, Mar. 2004, doi: 10.1016/J.INTIMP.2004.01.020.
  • [14] A. M. Pisoschi and G. P. Negulescu, “Methods for Total Antioxidant Activity Determination: A Review,” Biochemistry & Analytical Biochemistry, vol. 01, no. 01, 2012, doi: 10.4172/2161-1009.1000106.
  • [15] L. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules 2019, Vol. 24, Page 3770, vol. 24, no. 20, p. 3770, Oct. 2019, doi: 10.3390/MOLECULES24203770.
  • [16] A. Das and K. Satyaprakash, “Antimicrobial properties of natural products: A review Annada Das and Kaushik Satyaprakash,” ~ 532 ~ The Pharma Innovation Journal, vol. 7, no. 6, pp. 532–537, 2018, Accessed: Aug. 15, 2022. [Online]. Available: www.thepharmajournal.com
  • [17] M. S. Blois, “Antioxidant Determinations by the Use of a Stable Free Radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958, Accessed: Aug. 15, 2022. [Online]. Available: https://www.academia.edu/3348938/Antioxidant_Determinations_by_the_Use_of_a_Stable_Free_Radical
  • [18] E. Bursal, E. Köksal, I. Gülçin, G. Bilsel, and A. C. Gören, “Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS,” Food Research International, vol. 51, no. 1, pp. 66–74, Apr. 2013, doi: 10.1016/J.FOODRES.2012.11.022.
  • [19] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radic Biol Med, vol. 26, no. 9–10, pp. 1231–1237, May 1999, doi: 10.1016/S0891-5849(98)00315-3.
  • [20] R. Apak et al., “Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay,” Molecules, vol. 12, no. 7, pp. 1496–1547, Jul. 2007, doi: 10.3390/12071496.
  • [21] I. Gülçin, “Antioxidant activity of food constituents: an overview,” Arch Toxicol, vol. 86, no. 3, pp. 345–391, Mar. 2012, doi: 10.1007/S00204-011-0774-2.
  • [22] V. Fogliano, V. Verde, G. Randazzo, and A. Ritieni, “Method for Measuring Antioxidant Activity and Its Application to Monitoring the Antioxidant Capacity of Wines,” J Agric Food Chem, vol. 47, no. 3, pp. 1035–1040, Mar. 1999, doi: 10.1021/JF980496S.
  • [23] M. Oyaizu, “Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine.,” The Japanese Journal of Nutrition and Dietetics, vol. 44, no. 6, pp. 307–315, 1986, doi: 10.5264/EIYOGAKUZASHI.44.307.
  • [24] G. C. Yen and H. Y. Chen, “Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity,” J Agric Food Chem, vol. 43, no. 1, pp. 27–32, Jan. 1995, doi: 10.1021/JF00049A007/ASSET/JF00049A007.FP.PNG_V03.
  • [25] National Committee for Clinical Laboratory Standards., NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard Enclose -A 7, April 1997 ed. Wayne PA USA: NCCLS, 1997.
  • [26] L. Ercan and M. Doğru, “Su Teresi (Nasturtium Officinale) Bitkisinin Antioksidan Kapasitesinin Belirlenmesi,” Institute of Science, Diyarbakır, 2021.
  • [27] B. Devi, S. Bais, and N. S. Gill, “A Review on quinic acid and its therapeutic potential,” Inventi Rapid: Molecular Pharmacology, vol. 3, pp. 1–6, 2017, Accessed: Aug. 15, 2022. [Online]. Available: https://inventi.in/journal/article/140/22705/Inventi%20Rapid:%20Molecular%20Pharm/Pharmaceutical
  • [28] R. W. Pero, H. Lund, and T. Leanderson, “Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide,” Phytother Res, vol. 23, no. 3, pp. 335–346, Mar. 2009, doi: 10.1002/PTR.2628.
  • [29] J. G. Uranga, N. S. Podio, D. A. Wunderlin, and A. N. Santiago, “Theoretical and Experimental Study of the Antioxidant Behaviors of 5-O-Caffeoylquinic, Quinic and Caffeic Acids Based on Electronic and Structural Properties,” ChemistrySelect, vol. 1, no. 13, pp. 4113–4120, Aug. 2016, doi: 10.1002/SLCT.201600582.
  • [30] R. Roesler, R. R. Catharino, L. G. Malta, M. N. Eberlin, and G. Pastore, “Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry,” Food Chem, vol. 104, no. 3, pp. 1048–1054, Jan. 2007, doi: 10.1016/J.FOODCHEM.2007.01.017.
  • [31] Y. J. Yang et al., “Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots,” Food Chem, vol. 138, no. 2–3, pp. 2057–2063, Jun. 2013, doi: 10.1016/J.FOODCHEM.2012.10.122.
  • [32] J. Bai et al., “In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus,” J Food Saf, vol. 38, no. 1, p. e12416, Feb. 2018, doi: 10.1111/JFS.12416.
  • [33] J. Bai, Y. Wu, Q. Bu, K. Zhong, and H. Gao, “Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches,” LWT, vol. 153, p. 112441, Jan. 2022, doi: 10.1016/J.LWT.2021.112441.
  • [34] L. Lu et al., “Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa,” Chinese Medicine (United Kingdom), vol. 16, no. 1, pp. 1–17, Dec. 2021, doi: 10.1186/S13020-021-00481-8/FIGURES/5.
There are 34 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Leyla Ercan 0000-0002-6570-8128

Mehmet Doğru 0000-0002-2287-2913

Project Number ZGEF.20.001
Publication Date December 31, 2022
Submission Date August 25, 2022
Acceptance Date October 25, 2022
Published in Issue Year 2022

Cite

IEEE L. Ercan and M. Doğru, “Antioxidant and Antimicrobial Capacity of Quinic Acid”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 4, pp. 1018–1025, 2022, doi: 10.17798/bitlisfen.1167047.

Cited By









Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS