Research Article
BibTex RIS Cite
Year 2023, , 329 - 336, 27.06.2023
https://doi.org/10.17798/bitlisfen.1185118

Abstract

References

  • [1] I. Gonul, M. Kose, G. Ceyhan, and S. Serin, “Methoxy group containing bidentate Schiff base ligands and their transition metal complexes: Synthesis, structural characterisation, photoluminescence, antioxidant capacity and superoxide dismutase activity studies”, Inorganica Chimica Acta, vol. 453, pp. 522–530, 2016.
  • [2] A.A. Al-Amiery, “Synthesis and antioxidant, antimicrobial evaluation, DFT studies of novel metal complexes derivate from Schiff base”, Res. Chem. Intermed., vol.,38, pp. 745–759, 2012.
  • [3] C. Demetgül, M. Karakaplan, S. Serin, and M. Diğrak, “Synthesis, characterization, and biological properties of Ni(II), Co(II), and Cu(II) complexes of Schiff bases derived from 4-aminobenzylamine”, J. Coord. Chem., vol.62, pp. 3544–3551, 2009.
  • [4] A.A. Al-Amiery, A. A. H. Kadhum, M. Shamel, M. Satar, Y. Khalid, and A. B. Mohamad, “Antioxidant and antimicrobial activities of novel quinazolinones”, Med. Chem. Res., vol. 23, pp. 236–242, 2014.
  • [5] S. Saha, A. Das, K. Acharjee, and B. Sinha, “Synthesis, characterization and antibacterial studies of Mn(II) and Co(II) complexes of an ionic liquid tagged Schiff base”, J. Serb. Chem. Soc., vol. 81, pp. 1151–1159, 2016.
  • [6] M. S. Refat, “Complexes of uranyl(II), vanadyl(II) and zirconyl(II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity”, J. Mol. Struct., vol. 842, pp. 24–37, 2007.
  • [7] M. A Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, and M. S. Pillai, “Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes”, Spectrochim. Acta A, vol. 71, pp. 1599–1609, 2008.
  • [8] H. F. Abd El-Halim, M. M. Omar, and G. G. Mohamed, “Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes”, Spectrochim. Acta A, vol. 78, pp. 36–44, 2011.
  • [9] M. B. Halli, and R. B. Sumathi, “Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base”, J. Mol. Struct., vol. 1022, pp. 130–138, 2012.
  • [10] M. Şahin, N. Koçak, D. Erdenay, and U. Arslan, “Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity”, Spectrochim. Acta A, vol. 103, pp. 400–408, 2013.
  • [11] O. A. M. Ali, “Synthesis, spectroscopic, fluorescence properties and biological evaluation of novel Pd(II) and Cd(II) complexes of NOON tetradentate Schiff bases”, Spectrochim. Acta A, vol. 121, pp. 188–195, 2014.
  • [12] Q. Hasi, Y. Fan, X. Yao, D. Hu, and J. Liu, “Synthesis, characterization, antioxidant and antimicrobial activities of a bidentate Schiff base ligand and its metal complexes”, Polyhedron, vol. 109, pp. 75–80, 2016.
  • [13] M. I. Sundararajan, T. Jeyakumar, J. Anandakumaran, and B. K. Selvan, “Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 131, pp. 82-93, 2014.
  • [14] D. Çakmak, S.,Çakran, S. Yalçinkaya, and C. Demetgül, “Synthesis of salen-type Schiff base metal complexes, electropolymerization on graphite electrode surface and investigation of electrocatalytic effects”, Journal of Electroanalytical Chemistry, vol. 808, pp. 65-74, 2018.
  • [15] U. K. Sharma, S. Sood, N. Sharma, P. Rahi, R. Kumar, A. K. Sinha, and A. Gulati, “Synthesis and SAR investigation of natural phenylpropenederived methoxylated cinnamaldehydes and their novel Schiff bases as potent antimicrobial and antioxidant agents”, Med. Chem. Res., vol. 22, pp. 5129–5140, 2013.
  • [16] B. B. Sokmen, N. Gumrukcuoglu, S. Ugras, H. Sahin, Y. Sagkal, and H. I. Ugras, “Synthesis, antibacterial, antiurease, and antioxidant activities of some new 1,2,4-triazole Schiff base and amine derivatives”, Appl. Biochem. Biotechnol., vol. 175, pp. 705–714, 2015.
  • [17] M. Silinsin, and E. Bursal, “UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.”, Nat. Prod. Res., vol. 32, no. 12, pp. 1467-1471, 2018.
  • [18] R. Apak, K. Güçlü, M. Özyürek, and S. E. Karademir, “Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method”, J. Agric. Food Chem., vol. 52, no. 26, pp.7970-7981, 2004.
  • [19] A. Rehman, M. I. Choudhary, and W. J. Thomsen, Bioassay Techniques for Drug Development, Amsterdam, The Netherlands, Harwood Academic Publishers, pp. 9, 2001.
  • [20] R. S. Varma, Z. K. Khan, and A. P. Singh, “Antifungal agents: past, present and future prospects”, National Academy of Chemistry and Biology, India, Lucknow, pp. 55, 1998.
  • [21] S. B. Bukhari, S. Memon, M. Mahroof-Tahir, and M. I. Bhanger, “Synthesis, characterization and antioxidant activity copper-quercetin complex”, Spectrochim, Acta A, vol.71, no. 5, pp., 2009.
  • [22] M. R. Karekal, V. Biradar, and M. B. H. Mathada, “Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from Schiff base containing indole and quinoline moieties”, Bioinorg. Chem. Appl. Res., doi: 10.1155/2013/315972, 2013.
  • [23] H. A. R. Pramanik, P. C. Paul, P. Mondal, C. R. Bhattacharjee, “Mixed ligand complexes of cobalt(III) and iron (III) containing N2O2-chelating Schiff Base: Synthesis, characterization, antimicrobial activity, antioxidant and DFT study”, J. Mol. Struct., vol. 1100, pp. 496-505, 2015.
  • [24] R. A. Ammar, A. M. A. Alaghaz, M. E. Zayed, and L. A. Al-Bedair, “Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff’s base ligand”, J. Mol. Struct., vol. 1141, pp. 368-381, 2017.
  • [25] M. Gaber, H. A. El-Ghamry, S. K. Fathalla, and M. A. Mansour, “Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO22+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies”, Mater. Sci. Eng., vol. 83, pp. 78-89, 2018.
  • [26] T. Bal-Demirci, M. Şahin, E. Kondakçı, M. Özyürek, B. Ülküseven, and R. Apak, “Synthesis and antioxidant activites of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone”, Spectrochim., Acta A, vol. 138, pp. 866-872, 2015.
  • [27] W. Al Zoubi, A. A. S. Al-Hamdani, and M. Kaseem, “Synthesis and antioxidant activites of Schiff bases and their complexes: a review”, Appl. Organometal Chem., vol. 30, pp. 810-817, 2016.

Antioxidant and Antibacterial Activities of Salen-type Schiff Base and Metal Complexes

Year 2023, , 329 - 336, 27.06.2023
https://doi.org/10.17798/bitlisfen.1185118

Abstract

2-Aminobenzylamine based unsymmetrical salen type Schiff base and its Cu(II), Ni(II),Co(II) and Fe(III) metal complexes were researched in terms of their antioxidant and antibacterial activities in this study. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging (DPPH) method, ferric reducing antioxidant power (FRAP) method and cupric reducing antioxidant capacity (CUPRAC) method were carried out for determination of antioxidant effects of compounds. The antioxidant activity of the compounds were compared with the standard antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Fe, Ni and Cu complexes exhibited more scavenging activity than BHT. All compounds exhibit lower ferric reducing activity than BHA and BHT. Fe complex, Ni complex and the ligand have more antioxidant capacity than corresponding to BHT according to CUPRAC method. These assays showed that all compounds researched can use as synthetic antioxidants. Antibacterial effects of Schiff base and its metal complexes were investigated by agar disc diffusion method. Antibacterial studies of the compounds were achieved against some gram-positive and gram-negative bacteria. Enterococcus faecium, Pseudomonas aeroginosa, Klebsiella pneumoniae and Escherichia coli were used as bacterial strains. The beneficial datas were acquired.

References

  • [1] I. Gonul, M. Kose, G. Ceyhan, and S. Serin, “Methoxy group containing bidentate Schiff base ligands and their transition metal complexes: Synthesis, structural characterisation, photoluminescence, antioxidant capacity and superoxide dismutase activity studies”, Inorganica Chimica Acta, vol. 453, pp. 522–530, 2016.
  • [2] A.A. Al-Amiery, “Synthesis and antioxidant, antimicrobial evaluation, DFT studies of novel metal complexes derivate from Schiff base”, Res. Chem. Intermed., vol.,38, pp. 745–759, 2012.
  • [3] C. Demetgül, M. Karakaplan, S. Serin, and M. Diğrak, “Synthesis, characterization, and biological properties of Ni(II), Co(II), and Cu(II) complexes of Schiff bases derived from 4-aminobenzylamine”, J. Coord. Chem., vol.62, pp. 3544–3551, 2009.
  • [4] A.A. Al-Amiery, A. A. H. Kadhum, M. Shamel, M. Satar, Y. Khalid, and A. B. Mohamad, “Antioxidant and antimicrobial activities of novel quinazolinones”, Med. Chem. Res., vol. 23, pp. 236–242, 2014.
  • [5] S. Saha, A. Das, K. Acharjee, and B. Sinha, “Synthesis, characterization and antibacterial studies of Mn(II) and Co(II) complexes of an ionic liquid tagged Schiff base”, J. Serb. Chem. Soc., vol. 81, pp. 1151–1159, 2016.
  • [6] M. S. Refat, “Complexes of uranyl(II), vanadyl(II) and zirconyl(II) with orotic acid “vitamin B13”: Synthesis, spectroscopic, thermal studies and antibacterial activity”, J. Mol. Struct., vol. 842, pp. 24–37, 2007.
  • [7] M. A Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, and M. S. Pillai, “Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes”, Spectrochim. Acta A, vol. 71, pp. 1599–1609, 2008.
  • [8] H. F. Abd El-Halim, M. M. Omar, and G. G. Mohamed, “Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes”, Spectrochim. Acta A, vol. 78, pp. 36–44, 2011.
  • [9] M. B. Halli, and R. B. Sumathi, “Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base”, J. Mol. Struct., vol. 1022, pp. 130–138, 2012.
  • [10] M. Şahin, N. Koçak, D. Erdenay, and U. Arslan, “Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity”, Spectrochim. Acta A, vol. 103, pp. 400–408, 2013.
  • [11] O. A. M. Ali, “Synthesis, spectroscopic, fluorescence properties and biological evaluation of novel Pd(II) and Cd(II) complexes of NOON tetradentate Schiff bases”, Spectrochim. Acta A, vol. 121, pp. 188–195, 2014.
  • [12] Q. Hasi, Y. Fan, X. Yao, D. Hu, and J. Liu, “Synthesis, characterization, antioxidant and antimicrobial activities of a bidentate Schiff base ligand and its metal complexes”, Polyhedron, vol. 109, pp. 75–80, 2016.
  • [13] M. I. Sundararajan, T. Jeyakumar, J. Anandakumaran, and B. K. Selvan, “Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 131, pp. 82-93, 2014.
  • [14] D. Çakmak, S.,Çakran, S. Yalçinkaya, and C. Demetgül, “Synthesis of salen-type Schiff base metal complexes, electropolymerization on graphite electrode surface and investigation of electrocatalytic effects”, Journal of Electroanalytical Chemistry, vol. 808, pp. 65-74, 2018.
  • [15] U. K. Sharma, S. Sood, N. Sharma, P. Rahi, R. Kumar, A. K. Sinha, and A. Gulati, “Synthesis and SAR investigation of natural phenylpropenederived methoxylated cinnamaldehydes and their novel Schiff bases as potent antimicrobial and antioxidant agents”, Med. Chem. Res., vol. 22, pp. 5129–5140, 2013.
  • [16] B. B. Sokmen, N. Gumrukcuoglu, S. Ugras, H. Sahin, Y. Sagkal, and H. I. Ugras, “Synthesis, antibacterial, antiurease, and antioxidant activities of some new 1,2,4-triazole Schiff base and amine derivatives”, Appl. Biochem. Biotechnol., vol. 175, pp. 705–714, 2015.
  • [17] M. Silinsin, and E. Bursal, “UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.”, Nat. Prod. Res., vol. 32, no. 12, pp. 1467-1471, 2018.
  • [18] R. Apak, K. Güçlü, M. Özyürek, and S. E. Karademir, “Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method”, J. Agric. Food Chem., vol. 52, no. 26, pp.7970-7981, 2004.
  • [19] A. Rehman, M. I. Choudhary, and W. J. Thomsen, Bioassay Techniques for Drug Development, Amsterdam, The Netherlands, Harwood Academic Publishers, pp. 9, 2001.
  • [20] R. S. Varma, Z. K. Khan, and A. P. Singh, “Antifungal agents: past, present and future prospects”, National Academy of Chemistry and Biology, India, Lucknow, pp. 55, 1998.
  • [21] S. B. Bukhari, S. Memon, M. Mahroof-Tahir, and M. I. Bhanger, “Synthesis, characterization and antioxidant activity copper-quercetin complex”, Spectrochim, Acta A, vol.71, no. 5, pp., 2009.
  • [22] M. R. Karekal, V. Biradar, and M. B. H. Mathada, “Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from Schiff base containing indole and quinoline moieties”, Bioinorg. Chem. Appl. Res., doi: 10.1155/2013/315972, 2013.
  • [23] H. A. R. Pramanik, P. C. Paul, P. Mondal, C. R. Bhattacharjee, “Mixed ligand complexes of cobalt(III) and iron (III) containing N2O2-chelating Schiff Base: Synthesis, characterization, antimicrobial activity, antioxidant and DFT study”, J. Mol. Struct., vol. 1100, pp. 496-505, 2015.
  • [24] R. A. Ammar, A. M. A. Alaghaz, M. E. Zayed, and L. A. Al-Bedair, “Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff’s base ligand”, J. Mol. Struct., vol. 1141, pp. 368-381, 2017.
  • [25] M. Gaber, H. A. El-Ghamry, S. K. Fathalla, and M. A. Mansour, “Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO22+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies”, Mater. Sci. Eng., vol. 83, pp. 78-89, 2018.
  • [26] T. Bal-Demirci, M. Şahin, E. Kondakçı, M. Özyürek, B. Ülküseven, and R. Apak, “Synthesis and antioxidant activites of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone”, Spectrochim., Acta A, vol. 138, pp. 866-872, 2015.
  • [27] W. Al Zoubi, A. A. S. Al-Hamdani, and M. Kaseem, “Synthesis and antioxidant activites of Schiff bases and their complexes: a review”, Appl. Organometal Chem., vol. 30, pp. 810-817, 2016.
There are 27 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Sezer Göycıncık 0000-0002-9128-949X

Hatice Danahaliloğlu 0000-0002-5060-1205

Early Pub Date June 27, 2023
Publication Date June 27, 2023
Submission Date October 6, 2022
Acceptance Date June 8, 2023
Published in Issue Year 2023

Cite

IEEE S. Göycıncık and H. Danahaliloğlu, “Antioxidant and Antibacterial Activities of Salen-type Schiff Base and Metal Complexes”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 2, pp. 329–336, 2023, doi: 10.17798/bitlisfen.1185118.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS