Research Article
BibTex RIS Cite

Design and Performance Analysis of an Air-Based Photovoltaic/Thermal Collector in Winter

Year 2023, , 941 - 958, 28.12.2023
https://doi.org/10.17798/bitlisfen.1264165

Abstract

The most basic needs of the buildings in which we spend almost all of our time are electricity and heat demands. Especially in cold climatic regions, it is very important that both electrical energy and heating energy demand are met through the same system. The use of photovoltaic (PV), is increasing rapidly. Photovoltaic panels can transform solar energy into electrical energy with less than 20% performance. Photovoltaic-thermal(PV/T) collectors which can be mounted on facades of buildings or used as building envelopes, are one of the solar energy applications. With this collector, both electric energy and thermal energy demand is produced from solar energy. In our work, Photovoltaic panel and some kind of solar air collector have been taken into consideration. In order to determine the behavior of the air-based photovoltaic-thermal collector, an experimental setup and a measurement system have been established. The experimental setup consists of this measurement system, sensors that obtain data, and a data storage unit that can transmit temperature, humidity, and radiation data to the computer at the desired frequency. In order to determine the performance of the air-based PV/T collector, the efficiencies of both the PV and the solar air collector were calculated separately. To determine the performance of this collector, calculation criteria’s and model has been determined. When creating this model, the problem has been considered as time-dependent under irregular conditions. The theoretical analysis model, which was established to determine the performance of the air-based PV/T collector, was evaluated according to the winter climatic conditions of Izmir-Turkey.

Supporting Institution

Dokuz Eylul University Scientific Research Coordination Unit

Project Number

2017.KB.FEN.009.

Thanks

This study was supported by Dokuz Eylul University Scientific Research Coordination Unit Project

References

  • [1] S. C. Solanki, S. Dubey, and A. Tiwari, “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors,” Appl Energy, vol. 86, no. 11, pp. 2421–2428, Nov. 2009, doi: 10.1016/J.APENERGY.2009.03.013.
  • [2] S. R. Reddy, M. A. Ebadian, and C. X. Lin, “A review of PV–T systems: Thermal management and efficiency with single phase cooling,” Int J Heat Mass Transf, vol. 91, pp. 861–871, Dec. 2015, doi: 10.1016/J.IJHEATMASSTRANSFER.2015.07.134.
  • [3] A. N. Al-Shamani, K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan, “Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions,” Energy Convers Manag, vol. 124, pp. 528–542, Sep. 2016, doi: 10.1016/J.ENCONMAN.2016.07.052.
  • [4] C. Babu and P. Ponnambalam, “The role of thermoelectric generators in the hybrid PV/T systems: A review,” Energy Convers Manag, vol. 151, pp. 368–385, Nov. 2017, doi: 10.1016/J.ENCONMAN.2017.08.060.
  • [5] A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 658–684, Jan. 2015, doi: 10.1016/J.RSER.2014.08.069.
  • [6] Ömeroğlu G, “Fotovoltaik - Termal (PV / T) Sistemin Sayısal (CFD) ve Deneysel Analizi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 161–167, Mar. 2018.
  • [7] I. Nardi, D. Ambrosini, T. de Rubeis, D. Paoletti, M. Muttillo, and S. Sfarra, “Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions,” J Phys Conf Ser, vol. 923, p. 012040, Nov. 2017, doi: 10.1088/1742-6596/923/1/012040.
  • [8] A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, “Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Solar Energy Materials and Solar Cells, vol. 160, pp. 275–286, Feb. 2017, doi: 10.1016/J.SOLMAT.2016.10.047.
  • [9] P. Xu et al., “A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 839–854, Aug. 2017, doi: 10.1016/J.RSER.2016.11.063.
  • [10] Z. Qiu, X. Ma, X. Zhao, P. Li, and S. Ali, “Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system,” Appl Energy, vol. 165, pp. 260–271, Mar. 2016, doi: 10.1016/J.APENERGY.2015.11.053.
  • [11] M. J. Huang, P. C. Eames, and B. Norton, “Phase change materials for limiting temperature rise in building integrated photovoltaics,” Solar Energy, vol. 80, no. 9, pp. 1121–1130, Sep. 2006, doi: 10.1016/J.SOLENER.2005.10.006.
  • [12] S. Preet, B. Bhushan, and T. Mahajan, “Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM),” Solar Energy, vol. 155, pp. 1104–1120, Oct. 2017, doi: 10.1016/J.SOLENER.2017.07.040.
  • [13] C. S. Malvi, D. W. Dixon-Hardy, and R. Crook, “Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material,” Solar Energy, vol. 85, no. 7, pp. 1440–1446, Jul. 2011, doi: 10.1016/J.SOLENER.2011.03.027.
  • [14] Rüstemli S, Dinçer F, Çelik M, and Cengiz M. S, “Fotovoltaik Paneller: Güneş Takip Sistemleri ve İklimlendirme Sistemleri,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 2, no. 2, pp. 141–147, 2013.
  • [15] H. M. S. Bahaidarah, “Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics,” Solar Energy, vol. 135, pp. 605–617, Oct. 2016, doi: 10.1016/J.SOLENER.2016.06.015.
  • [16] H. A. Hasan, K. Sopian, A. H. Jaaz, and A. N. Al-Shamani, “Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector,” Solar Energy, vol. 144, pp. 321–334, Mar. 2017, doi: 10.1016/J.SOLENER.2017.01.036.
  • [17] S. A. Klein, J. A. Duffie, and W. A. Beckman, “Transient Considerations of Flat-Plate Solar Collectors,” Journal of Engineering for Power, vol. 96, no. 2, pp. 109–113, Apr. 1974, doi: 10.1115/1.3445757.
  • [18] A. Suzuki and S. Kitamura, “Combined Photovoltaic and Thermal Hybrid Collector,” Jpn J Appl Phys, vol. 19, no. S2, p. 79, Jan. 1980, doi: 10.7567/JJAPS.19S2.79.
  • [19] A. A. Hegazy, “Comparative study of the performances of four photovoltaic/thermal solar air collectors,” Energy Convers Manag, vol. 41, no. 8, pp. 861–881, May 2000, doi: 10.1016/S0196-8904(99)00136-3.
  • [20] K. Moradi, M. Ali Ebadian, and C. X. Lin, “A review of PV/T technologies: Effects of control parameters,” Int J Heat Mass Transf, vol. 64, pp. 483–500, Sep. 2013, doi: 10.1016/J.IJHEATMASSTRANSFER.2013.04.044.
  • [21] L. M. Candanedo, A. Athienitis, and K.-W. Park, “Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System,” J Sol Energy Eng, vol. 133, no. 2, May 2011, doi: 10.1115/1.4003145.
  • [22] E. Touti, M. Masmali, M. Fterich, and H. Chouikhi, “Experimental and numerical study of the PVT design impact on the electrical and thermal performances,” Case Studies in Thermal Engineering, vol. 43, 2023, doi: 10.1016/j.csite.2023.102732.
  • [23] C.-Y. Huang, H.-C. Sung, and K.-L. Yen, “Experimental Study of Photovoltaic/Thermal (PV/T) Hybrid System,” International Journal of Smart Grid and Clean Energy, vol. 2, no. 2, 2013, doi: 10.12720/sgce.2.2.148-151.
  • [24] A. Buonomano, F. Calise, and M. Vicidomini, “Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors,” Energies (Basel), vol. 9, no. 7, 2016, doi: 10.3390/en9070497.
Year 2023, , 941 - 958, 28.12.2023
https://doi.org/10.17798/bitlisfen.1264165

Abstract

Project Number

2017.KB.FEN.009.

References

  • [1] S. C. Solanki, S. Dubey, and A. Tiwari, “Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors,” Appl Energy, vol. 86, no. 11, pp. 2421–2428, Nov. 2009, doi: 10.1016/J.APENERGY.2009.03.013.
  • [2] S. R. Reddy, M. A. Ebadian, and C. X. Lin, “A review of PV–T systems: Thermal management and efficiency with single phase cooling,” Int J Heat Mass Transf, vol. 91, pp. 861–871, Dec. 2015, doi: 10.1016/J.IJHEATMASSTRANSFER.2015.07.134.
  • [3] A. N. Al-Shamani, K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan, “Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions,” Energy Convers Manag, vol. 124, pp. 528–542, Sep. 2016, doi: 10.1016/J.ENCONMAN.2016.07.052.
  • [4] C. Babu and P. Ponnambalam, “The role of thermoelectric generators in the hybrid PV/T systems: A review,” Energy Convers Manag, vol. 151, pp. 368–385, Nov. 2017, doi: 10.1016/J.ENCONMAN.2017.08.060.
  • [5] A. Makki, S. Omer, and H. Sabir, “Advancements in hybrid photovoltaic systems for enhanced solar cells performance,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 658–684, Jan. 2015, doi: 10.1016/J.RSER.2014.08.069.
  • [6] Ömeroğlu G, “Fotovoltaik - Termal (PV / T) Sistemin Sayısal (CFD) ve Deneysel Analizi,” Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 1, pp. 161–167, Mar. 2018.
  • [7] I. Nardi, D. Ambrosini, T. de Rubeis, D. Paoletti, M. Muttillo, and S. Sfarra, “Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions,” J Phys Conf Ser, vol. 923, p. 012040, Nov. 2017, doi: 10.1088/1742-6596/923/1/012040.
  • [8] A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, “Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review,” Solar Energy Materials and Solar Cells, vol. 160, pp. 275–286, Feb. 2017, doi: 10.1016/J.SOLMAT.2016.10.047.
  • [9] P. Xu et al., “A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 839–854, Aug. 2017, doi: 10.1016/J.RSER.2016.11.063.
  • [10] Z. Qiu, X. Ma, X. Zhao, P. Li, and S. Ali, “Experimental investigation of the energy performance of a novel Micro-encapsulated Phase Change Material (MPCM) slurry based PV/T system,” Appl Energy, vol. 165, pp. 260–271, Mar. 2016, doi: 10.1016/J.APENERGY.2015.11.053.
  • [11] M. J. Huang, P. C. Eames, and B. Norton, “Phase change materials for limiting temperature rise in building integrated photovoltaics,” Solar Energy, vol. 80, no. 9, pp. 1121–1130, Sep. 2006, doi: 10.1016/J.SOLENER.2005.10.006.
  • [12] S. Preet, B. Bhushan, and T. Mahajan, “Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM),” Solar Energy, vol. 155, pp. 1104–1120, Oct. 2017, doi: 10.1016/J.SOLENER.2017.07.040.
  • [13] C. S. Malvi, D. W. Dixon-Hardy, and R. Crook, “Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material,” Solar Energy, vol. 85, no. 7, pp. 1440–1446, Jul. 2011, doi: 10.1016/J.SOLENER.2011.03.027.
  • [14] Rüstemli S, Dinçer F, Çelik M, and Cengiz M. S, “Fotovoltaik Paneller: Güneş Takip Sistemleri ve İklimlendirme Sistemleri,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 2, no. 2, pp. 141–147, 2013.
  • [15] H. M. S. Bahaidarah, “Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics,” Solar Energy, vol. 135, pp. 605–617, Oct. 2016, doi: 10.1016/J.SOLENER.2016.06.015.
  • [16] H. A. Hasan, K. Sopian, A. H. Jaaz, and A. N. Al-Shamani, “Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector,” Solar Energy, vol. 144, pp. 321–334, Mar. 2017, doi: 10.1016/J.SOLENER.2017.01.036.
  • [17] S. A. Klein, J. A. Duffie, and W. A. Beckman, “Transient Considerations of Flat-Plate Solar Collectors,” Journal of Engineering for Power, vol. 96, no. 2, pp. 109–113, Apr. 1974, doi: 10.1115/1.3445757.
  • [18] A. Suzuki and S. Kitamura, “Combined Photovoltaic and Thermal Hybrid Collector,” Jpn J Appl Phys, vol. 19, no. S2, p. 79, Jan. 1980, doi: 10.7567/JJAPS.19S2.79.
  • [19] A. A. Hegazy, “Comparative study of the performances of four photovoltaic/thermal solar air collectors,” Energy Convers Manag, vol. 41, no. 8, pp. 861–881, May 2000, doi: 10.1016/S0196-8904(99)00136-3.
  • [20] K. Moradi, M. Ali Ebadian, and C. X. Lin, “A review of PV/T technologies: Effects of control parameters,” Int J Heat Mass Transf, vol. 64, pp. 483–500, Sep. 2013, doi: 10.1016/J.IJHEATMASSTRANSFER.2013.04.044.
  • [21] L. M. Candanedo, A. Athienitis, and K.-W. Park, “Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System,” J Sol Energy Eng, vol. 133, no. 2, May 2011, doi: 10.1115/1.4003145.
  • [22] E. Touti, M. Masmali, M. Fterich, and H. Chouikhi, “Experimental and numerical study of the PVT design impact on the electrical and thermal performances,” Case Studies in Thermal Engineering, vol. 43, 2023, doi: 10.1016/j.csite.2023.102732.
  • [23] C.-Y. Huang, H.-C. Sung, and K.-L. Yen, “Experimental Study of Photovoltaic/Thermal (PV/T) Hybrid System,” International Journal of Smart Grid and Clean Energy, vol. 2, no. 2, 2013, doi: 10.12720/sgce.2.2.148-151.
  • [24] A. Buonomano, F. Calise, and M. Vicidomini, “Design, simulation and experimental investigation of a solar system based on PV panels and PVT collectors,” Energies (Basel), vol. 9, no. 7, 2016, doi: 10.3390/en9070497.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Özer Kestane 0000-0001-6092-2881

Koray Ulgen 0000-0002-9560-1727

Project Number 2017.KB.FEN.009.
Early Pub Date December 25, 2023
Publication Date December 28, 2023
Submission Date March 12, 2023
Acceptance Date October 9, 2023
Published in Issue Year 2023

Cite

IEEE Ö. Kestane and K. Ulgen, “Design and Performance Analysis of an Air-Based Photovoltaic/Thermal Collector in Winter”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 4, pp. 941–958, 2023, doi: 10.17798/bitlisfen.1264165.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS