Research Article
BibTex RIS Cite
Year 2024, , 52 - 61, 24.03.2024
https://doi.org/10.17798/bitlisfen.1331265

Abstract

References

  • [1] M. G. Dong, M. I. Sayyed, G. Lakshminarayana, M. Ç. Ersundu, A. E. Ersundu, P. Nayar, and M.A. Mahdi, “Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code”, Journal of Non-Crystalline Solids, vol. 468, pp. 12-6, 2017.
  • [2] M. Schulc, M. Kostal, E. Novak, R. Kubín, and J. Simon, “Application of 252Cf neutron source for precise nuclear data experiments”, Applied Radiation and Isotopes, vol. 151, pp. 187–195, 2019.
  • [3] F. C. Hila, C. A. M. Dingle, A. Asuncion-Astronomo, C. V. Balderas, M. L. Grande, K. M. D. Romallosa, N. R. D. Guillermo, “Evaluation of time-dependent strengths of californium neutron sources by decay of 252Cf, 250Cf, and 248Cm: uncertainties by Monte Carlo method”, Applied Radiation and Isotopes, vol. 167, 2021a.
  • [4] J. Biau, E. Chautard, P. Verrelle, and M. Dutreix, “Altering DNA repair to improve radiation therapy: specific and multiple pathway targeting”, Frontiers in oncology, vol. 9, pp.1009, 2019.
  • [5] R. E. Stoller, “Radiation damage correlation. In: Comprehensive Nuclear Materials”, Elsevier, pp. 456–467, 2020.
  • [6] M. K. A. Roslan, M. Ismail, A. B. H. Kueh, and M. R. M. Zin, “High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding”, Construction and Building Materials, vol. 215, pp.718-725, 2019.
  • [7] M. G. Dong, X. X. Xue, Y. Elmahroug, M. I. Sayyed, and M. H. M. Zaid, “Investigation of shielding parameters of some boron containing resources for gamma ray and fast neutron”, Results in Physics, vol. 13, pp. 1-7, 2019.
  • [8] C. V. More, R. R. Bhosale, and P. P. Pawar, “Detection of new polymer materials as gamma-ray-shielding materials”, Radiation Effects and Defects in Solids, vol. 172, pp.469-484, 2017.
  • [9] M. Büyükyıldız, M. A. Taşdelen, Y. Karabul, M. Çağlar, O. İçelli, and E. Boydaş, “Measurement of photon interaction parameters of high-performance polymers and their composites”, Radiation Effects and Defects in Solids, vol. 173, pp.474-488, 2018.
  • [10] N. R.Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “New shielding composite paste for mixed fields of fast neutrons and gamma rays”, Materials Chemistry and Physics, vol. 233, pp.249-253, 2019.
  • [11] F. C. Hila, J. F. M. Jecong, C. A. M., Dingle, A. J. Asuncion-Astronomo, C. V. Balderas, J. A. Sagum, and N. R. D. Guillermo, “ENDF/B-VIII. 0-based fast neutron removal cross sections database in Z= 1 to 92 generated via multi-layered spherical geometry”, Radiation Physics and Chemistry, vol. 206, p.110770, 2023.
  • [12] O, Agar, “Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral” Radiochim. Acta, vol. 106, pp. 1009–16, 2018.
  • [13] H. O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E. A. Guclu, O. Kilicoglu, and M. I. Sayyed, “Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation”, Ceramics International, vol. 45, pp.19206-19222, 2019.
  • [14] M. I. Sayyed, A. Kumar, H. O. Tekin, R. Kaur, M. Singh, O. Agar, and M. U. Khandaker, “Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems”, Progress in Nuclear Energy, vol. 118, p.103118, 2020.
  • [15] Y. Al-Hadeethi, and M. I. Sayyed, “Radiation attenuation properties of Bi2O3–Na2O–V2O5–TiO2–TeO2 glass system using Phy-X/PSD software” Ceramics international, vol. 46, pp.4795-4800, 2020.
  • [16] L. K. Zoller, “Fast-neutron removal cross sections”, Nucleonics, vol. 22, 1964.
  • [17] M.G. El-Samrah, A. M. El-Mohandes, A. M. El-Khayatt, and S. E. Chidiac, “MRCsC: A user-friendly software for predicting shielding effectiveness against fast neutrons”, Radiation Physics and Chemistry, vol. 182, 2021.
  • [18] F. C. Hila, A. Asuncion-Astronomo, C. A. M. Dingle, J. F. M. Jecong, A. M. V. Javier-Hila, M. B. Z. Gili, C. V. Balderas, G. E. P. Lopez, N. R. D. Guillermo, and A. V. Amorsolo Jr, “EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI. 8)”, Radiation Physics and Chemistry, vol. 182, 2021b.
  • [19] Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I. and Kurudirek, M., 2020. Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry”, Radiation Physics and Chemistry, 166, p.108496.
  • [20] N. Ade, D. Eeden, and F. C. P. van, Plessis, “Characterization of Nylon-12 as a water-equivalent solid phantom material for dosimetric measurements in therapeutic photon and electron beams”, Applied Radiation and Isotopes, vol. 155, p.108919, 2020.
  • [21] F. Araki, “Dosimetric properties of a Solid Water High Equivalency (SW557) phantom for megavoltage photon beams”, Physica Medica, vol. 39, pp. 132–136, 2017.
  • [22] R. Kumar, S. D. Sharma, S. Desphande, Y. Ghadi, V. S. Shaiju, H. I. Amols, and Y. S. Mayya, “Acrylonitrile Butadiene Styrene (ABS) plastic-based low-cost tissue equivalent phantom for verification dosimetry in IMRT”, Journal of Applied Clinical Medical Physics, vol. 11, no. 1, pp. 24-32, 2009.
  • [23] V. P. Singh, N. M. Badiger, and N. Kucuk, “Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers”, Radioprotection, vol 49, no. 2, pp.155-21, 2014.
  • [24] S. Brown, A. Venning, Y. De Deene, P. Vial, L. Oliver, J. Adamovics, and C. Baldock, “Radiological properties of the PRESAGE and PAGAT polymer dosimeters”, Applied Radiation and Isotopes, vol 66, pp. 1970–74, 2008.
  • [25] T. Şahmaran, and A. Kaşkaş, “Comparisons of various water-equivalent materials with water phantom using the Geant4/GATE simulation program”, International Journal of Radiation Research, vol 20, no. 3, pp.709-714, 2022.
  • [26] M. M. Mohd Yusof, R. Hashim, A. A. Tajuddin, S. Bauk, and O. Sulaiman, “Characterization of Rhizophora spp. particleboards as phantom for photon beams”, Ind. Crop. Prod., vol. 965, 467-474, 2017.
  • [27] N. R. Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “Calculation of Fast neutron Removal Cross-section and Gamma ray Attenuation for New composite Paste Shields”, Interciencias Journal, vol 44, no. 8, 2019.
  • [28] A. M. S. Issa, K. Ashok, M. I. Sayyed, M. G. Dong, and Y. Elmahroug, “Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses”, Mater. Chem. Phys, vol. 212, pp. 12-20, 2018.
  • [29] G. T. Chapman, and C. T. Storrs, Effective Neutron Removal Cross Sections for Shielding. USAEC Report ORNL-1843 (AECD-3978). Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995.

Evaluation the Shielding Properties of Various Water Equivalent Materials Using Different Calculation Methods and Monte Carlo

Year 2024, , 52 - 61, 24.03.2024
https://doi.org/10.17798/bitlisfen.1331265

Abstract

In this study, the linear attenuation coefficients (LAC), mass attenuation coefficients (MAC), half-value layer (HVL), and mean free path (MFP) of various materials such as water equivalent, ABS, Presage, RMI457, RW3, SW557, Epoxy, A150, Rhizophora spp., and Nylon-12 have been calculated using the Monte Carlo simulation method, EpiXS, Phy-X/PSD, and XCOM. Additionally, the fast neutron effective removal cross sections (ΣR) have been calculated using the empirical calculation method, Phy-X/PSD, MRCsC program, experimental and MNCP5 with the help of fast neutron mass removal cross sections. Among all the materials studied, Nylon-12 has the highest ΣR value. The calculated values of HVL, MFP, LAC, and MAC reveal that RW3, Epoxy, and Presage are the best materials in terms of their shielding properties, respectively.

References

  • [1] M. G. Dong, M. I. Sayyed, G. Lakshminarayana, M. Ç. Ersundu, A. E. Ersundu, P. Nayar, and M.A. Mahdi, “Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code”, Journal of Non-Crystalline Solids, vol. 468, pp. 12-6, 2017.
  • [2] M. Schulc, M. Kostal, E. Novak, R. Kubín, and J. Simon, “Application of 252Cf neutron source for precise nuclear data experiments”, Applied Radiation and Isotopes, vol. 151, pp. 187–195, 2019.
  • [3] F. C. Hila, C. A. M. Dingle, A. Asuncion-Astronomo, C. V. Balderas, M. L. Grande, K. M. D. Romallosa, N. R. D. Guillermo, “Evaluation of time-dependent strengths of californium neutron sources by decay of 252Cf, 250Cf, and 248Cm: uncertainties by Monte Carlo method”, Applied Radiation and Isotopes, vol. 167, 2021a.
  • [4] J. Biau, E. Chautard, P. Verrelle, and M. Dutreix, “Altering DNA repair to improve radiation therapy: specific and multiple pathway targeting”, Frontiers in oncology, vol. 9, pp.1009, 2019.
  • [5] R. E. Stoller, “Radiation damage correlation. In: Comprehensive Nuclear Materials”, Elsevier, pp. 456–467, 2020.
  • [6] M. K. A. Roslan, M. Ismail, A. B. H. Kueh, and M. R. M. Zin, “High-density concrete: exploring Ferro boron effects in neutron and gamma radiation shielding”, Construction and Building Materials, vol. 215, pp.718-725, 2019.
  • [7] M. G. Dong, X. X. Xue, Y. Elmahroug, M. I. Sayyed, and M. H. M. Zaid, “Investigation of shielding parameters of some boron containing resources for gamma ray and fast neutron”, Results in Physics, vol. 13, pp. 1-7, 2019.
  • [8] C. V. More, R. R. Bhosale, and P. P. Pawar, “Detection of new polymer materials as gamma-ray-shielding materials”, Radiation Effects and Defects in Solids, vol. 172, pp.469-484, 2017.
  • [9] M. Büyükyıldız, M. A. Taşdelen, Y. Karabul, M. Çağlar, O. İçelli, and E. Boydaş, “Measurement of photon interaction parameters of high-performance polymers and their composites”, Radiation Effects and Defects in Solids, vol. 173, pp.474-488, 2018.
  • [10] N. R.Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “New shielding composite paste for mixed fields of fast neutrons and gamma rays”, Materials Chemistry and Physics, vol. 233, pp.249-253, 2019.
  • [11] F. C. Hila, J. F. M. Jecong, C. A. M., Dingle, A. J. Asuncion-Astronomo, C. V. Balderas, J. A. Sagum, and N. R. D. Guillermo, “ENDF/B-VIII. 0-based fast neutron removal cross sections database in Z= 1 to 92 generated via multi-layered spherical geometry”, Radiation Physics and Chemistry, vol. 206, p.110770, 2023.
  • [12] O, Agar, “Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral” Radiochim. Acta, vol. 106, pp. 1009–16, 2018.
  • [13] H. O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E. A. Guclu, O. Kilicoglu, and M. I. Sayyed, “Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation”, Ceramics International, vol. 45, pp.19206-19222, 2019.
  • [14] M. I. Sayyed, A. Kumar, H. O. Tekin, R. Kaur, M. Singh, O. Agar, and M. U. Khandaker, “Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems”, Progress in Nuclear Energy, vol. 118, p.103118, 2020.
  • [15] Y. Al-Hadeethi, and M. I. Sayyed, “Radiation attenuation properties of Bi2O3–Na2O–V2O5–TiO2–TeO2 glass system using Phy-X/PSD software” Ceramics international, vol. 46, pp.4795-4800, 2020.
  • [16] L. K. Zoller, “Fast-neutron removal cross sections”, Nucleonics, vol. 22, 1964.
  • [17] M.G. El-Samrah, A. M. El-Mohandes, A. M. El-Khayatt, and S. E. Chidiac, “MRCsC: A user-friendly software for predicting shielding effectiveness against fast neutrons”, Radiation Physics and Chemistry, vol. 182, 2021.
  • [18] F. C. Hila, A. Asuncion-Astronomo, C. A. M. Dingle, J. F. M. Jecong, A. M. V. Javier-Hila, M. B. Z. Gili, C. V. Balderas, G. E. P. Lopez, N. R. D. Guillermo, and A. V. Amorsolo Jr, “EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI. 8)”, Radiation Physics and Chemistry, vol. 182, 2021b.
  • [19] Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I. and Kurudirek, M., 2020. Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry”, Radiation Physics and Chemistry, 166, p.108496.
  • [20] N. Ade, D. Eeden, and F. C. P. van, Plessis, “Characterization of Nylon-12 as a water-equivalent solid phantom material for dosimetric measurements in therapeutic photon and electron beams”, Applied Radiation and Isotopes, vol. 155, p.108919, 2020.
  • [21] F. Araki, “Dosimetric properties of a Solid Water High Equivalency (SW557) phantom for megavoltage photon beams”, Physica Medica, vol. 39, pp. 132–136, 2017.
  • [22] R. Kumar, S. D. Sharma, S. Desphande, Y. Ghadi, V. S. Shaiju, H. I. Amols, and Y. S. Mayya, “Acrylonitrile Butadiene Styrene (ABS) plastic-based low-cost tissue equivalent phantom for verification dosimetry in IMRT”, Journal of Applied Clinical Medical Physics, vol. 11, no. 1, pp. 24-32, 2009.
  • [23] V. P. Singh, N. M. Badiger, and N. Kucuk, “Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers”, Radioprotection, vol 49, no. 2, pp.155-21, 2014.
  • [24] S. Brown, A. Venning, Y. De Deene, P. Vial, L. Oliver, J. Adamovics, and C. Baldock, “Radiological properties of the PRESAGE and PAGAT polymer dosimeters”, Applied Radiation and Isotopes, vol 66, pp. 1970–74, 2008.
  • [25] T. Şahmaran, and A. Kaşkaş, “Comparisons of various water-equivalent materials with water phantom using the Geant4/GATE simulation program”, International Journal of Radiation Research, vol 20, no. 3, pp.709-714, 2022.
  • [26] M. M. Mohd Yusof, R. Hashim, A. A. Tajuddin, S. Bauk, and O. Sulaiman, “Characterization of Rhizophora spp. particleboards as phantom for photon beams”, Ind. Crop. Prod., vol. 965, 467-474, 2017.
  • [27] N. R. Abd Elwahab, N. Helal, T. Mohamed, F. Shahin, and F. M. Ali, “Calculation of Fast neutron Removal Cross-section and Gamma ray Attenuation for New composite Paste Shields”, Interciencias Journal, vol 44, no. 8, 2019.
  • [28] A. M. S. Issa, K. Ashok, M. I. Sayyed, M. G. Dong, and Y. Elmahroug, “Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses”, Mater. Chem. Phys, vol. 212, pp. 12-20, 2018.
  • [29] G. T. Chapman, and C. T. Storrs, Effective Neutron Removal Cross Sections for Shielding. USAEC Report ORNL-1843 (AECD-3978). Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1995.
There are 29 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Araştırma Makalesi
Authors

Turan Şahmaran 0000-0003-3708-6162

Early Pub Date March 21, 2024
Publication Date March 24, 2024
Submission Date July 22, 2023
Acceptance Date March 12, 2024
Published in Issue Year 2024

Cite

IEEE T. Şahmaran, “Evaluation the Shielding Properties of Various Water Equivalent Materials Using Different Calculation Methods and Monte Carlo”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 1, pp. 52–61, 2024, doi: 10.17798/bitlisfen.1331265.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS