Research Article
BibTex RIS Cite
Year 2023, , 1289 - 1297, 28.12.2023
https://doi.org/10.17798/bitlisfen.1383335

Abstract

References

  • [1] ISRM, The complete suggested methods for rock characterization, testing and monitoring: 1974–2006. London: Springer, 2007.
  • [2] A. Jamshidi, M. R. Nikudel, M. Khamehchiyan, R. Zarei Sahamieh, and Y. Abdi, “A correlation between P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones,” Arab. J. Geosci., vol. 9, no. 10, p. 568, Jul. 2016, doi: 10.1007/s12517-016-2542-3.
  • [3] M. Heidari, G. R. Khanlari, M. T. Kaveh, and S. Kargarian, “Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing,” Rock Mech. Rock Eng., vol. 45, no. 2, pp. 265–273, 2012, doi: 10.1007/s00603-011-0196-8.
  • [4] A. Jamshidi, “A Comparative Study of Point Load Index Test Procedures in Predicting the Uniaxial Compressive Strength of Sandstones,” Rock Mech. Rock. Eng., vol. 55, pp. 4507–4516, Jul. 2022, doi: 10.1007/S00603-022-02877-W.
  • [5] D. Akbay, “Antalya-Kemer-Tekirova Karayolu Güzergâhinda Bulunan Altan Ayağ Tünelindeki (T3 Tüneli) Delik Delme Performans Analizi,” M.S. thesis, Dept. Min. Eng., Süleyman Demirel Uni., Isparta, Türkiye, 2013.
  • [6] D. Akbay and R. Altındağ, “Reliability and evaluation of point load index values obtained from different testing devices,” J. South Afr. Inst. Min. Metall., vol. 120, no. 3, pp. 181–190, 2020.
  • [7] J. A. Franklin, E. Broch, and G. Walton, “Logging the Mechanical Character of Rock,” Transactions of the Institution of Mining and Metallurgy, vol. 80, no. A, pp. 1–9, 1971.
  • [8] G. Wijk, G. Rehbinder, and G. Lögdström, “The relation between the uniaxial tensile strength and the sample size for bohus granite,” Rock Mechanics Felsmechanik Mecanique des Roches, vol. 10, no. 4, pp. 201–219, 1978, doi: 10.1007/BF01891959.
  • [9] S. H. Al-Jassar and A. B. Hawkins, “Geotechnical Properties of The Carboniferous Limestone of The Bristol Area The Influence of Petrography And Chemistry,” in 4th ISRM Congr., 2-8 September, Montreux, Switzerland, 1979, pp. 3–14.
  • [10] N. Brook, “Size Correction for Point Load Testing,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 17, no. 2, pp. 231–235, 1980.
  • [11] E. Broch and J. A. Franklin, “The Point-Load Strength Test,” Int. J. Rock Mech. Min. Sci., vol. 9, pp. 669–697, 1972.
  • [12] M. Greminger, “Experimental studies of the influence of rock anisotropy on size and shape effects in point-load testing,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 19, no. 5, pp. 241–246, 1982, doi: 10.1016/0148-9062(82)90222-4.
  • [13] I. R. Forster, “The influence of core sample geometry on the axial point-load test,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 20, no. 6, pp. 291–295, 1983, doi: 10.1016/0148-9062(83)90599-5.
  • [14] E. Broch, “Estimation of strength anisotropy using the point-load test,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 20, no. 4, pp. 181–187, 1983, doi: 10.1016/0148-9062(83)90942-7.
  • [15] ISRM Comission of Laboratory Tests, “Suggested Methods for Determining Point-Load Strength, Document 1,” Lisbon, 1973.
  • [16] N. Brook, “The equivalent core diameter method of size and shape correction in point load testing,” Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., vol. 22, no. 2, pp. 61–70, 1985, doi: 10.1016/0148-9062(85)92328-9.
  • [17] T. Abdallah, “Towards a Realistic Methodology of Modelling a Rock Blasting Pattern,” in Türkiye XIII. Madencilik Kong., 1993, pp. 289–300.
  • [18] K. T. Chau, “Analytic solutions for diametral point load strength tests,” J. Eng. Mech., vol. 124, no. 8, pp. 875–883, 1998, Accessed: Nov. 23, 2017, doi/pdf/10.1061/(ASCE)0733-9399(1998)124:8(875)
  • [19] X. X. Wei, K. T. Chau, and R. H. C. Wong, “Analytic solution for axial point load strength test on solid circular cylinders,” J. Eng. Mech., vol. 125, no. 12, pp. 1349–1357, 1999, Accessed: Nov. 23, 2017. [Online]. Available: http://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9399(1999)125:12(1349)
  • [20] K. T. Chau and X. X. Wei, “New analytic solution for the diametral point load strength test on finite solid circular cylinders,” Int. J. Solids. Struct., vol. 38, no. 9, pp. 1459–1481, 2001, doi: 10.1016/S0020-7683(00)00122-0.
  • [21] A. Zacoeb and K. Ishibashi, “Point Load Test Application for Estimating Compressive Strength of Concrete Structures From Small Core,” ARPN J. Eng. Appl. Sci., vol. 4, no. 7, pp. 46–57, 2009.
  • [22] J. K. Li, F. F. Li, and X. K. Wei, “The effect of specimen’s height on the point load test,” Adv Mat Res, vol. 848, pp. 108–111, 2014, doi: 10.4028/www.scientific.net/AMR.848.108.
  • [23] M. Forbes, H. Masoumi, S. Saydam, and P. Hagan, “Investigation into the effect of length to diameter ratio on the point load strength index of Gosford sandstone,” in 49th US Rock Mechanics / Geomechanics Symp., San Francisco, CA, USA, 28 June-1 July, 2015, pp. 1–11.
  • [24] H. Masoumi, H. Roshan, A. Hedayat, and P. C. Hagan, “Scale-Size Dependency of Intact Rock under Point-Load and Indirect Tensile Brazilian Testing,” Int. J. Geomech., vol. 18, no. 3, p. 04018006, Mar. 2018, doi: 10.1061/(asce)gm.1943-5622.0001103.
  • [25] ISRM, “Suggested Method for Determining Point Load Strength,” in ISRM, U. R. and H. J.A., Eds., London: Springer, 1985, pp. 53–60.
  • [26] Natural stone test methods - Determination of water absorption coefficient by capillarity, TS EN 1925, TSE, Ankara. 2000. [Online]. Available: https://www.tse.org.tr/
  • [27] Natural stone test methods - Determination of sound speed propagation, TS EN 14579, TSE, Ankara. 2006. Available: https://www.tse.org.tr/
  • [28] Natural stone test methods - Determination of uniaxial compressive strength, TS EN 1926, TSE, Ankara. 2013. Available: https://www.tse.org.tr/

Evaluating the Effect of Diameter-to-Length Ratio in Point Load Index Test on Predicting Uniaxial Compressive Strength

Year 2023, , 1289 - 1297, 28.12.2023
https://doi.org/10.17798/bitlisfen.1383335

Abstract

Accurate determination of the strength properties of rock materials is very important in engineering projects. The most important parameter used to express the strength of rocks is the uniaxial compressive strength (UCS). However, in some cases it can be quite difficult to determine the UCS. For example, when it is difficult to obtain rock specimens of the required size for UCS testing, indirect methods such as point load strength and ultrasonic wave velocity are used to estimate UCS. If the UCS is determined incorrectly, this can lead to irreversible design errors, project delays and financial losses. PLI testing is performed on specimens of different shapes as well as on specimens of different sizes. This study investigates the ability of the values obtained as a result of PLI tests on specimens prepared with different diameter/length (D/L) ratios to predict UCS. For this purpose, PLI experiments were performed on seven different carbonate rocks prepared at different D/L ratios. The relationships between the obtained values and the UCS values of the rocks were analyzed. High correlations were obtained between PLI and UCS values and it was observed that D/L ratio has no significant effect on UCS estimation.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] ISRM, The complete suggested methods for rock characterization, testing and monitoring: 1974–2006. London: Springer, 2007.
  • [2] A. Jamshidi, M. R. Nikudel, M. Khamehchiyan, R. Zarei Sahamieh, and Y. Abdi, “A correlation between P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones,” Arab. J. Geosci., vol. 9, no. 10, p. 568, Jul. 2016, doi: 10.1007/s12517-016-2542-3.
  • [3] M. Heidari, G. R. Khanlari, M. T. Kaveh, and S. Kargarian, “Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing,” Rock Mech. Rock Eng., vol. 45, no. 2, pp. 265–273, 2012, doi: 10.1007/s00603-011-0196-8.
  • [4] A. Jamshidi, “A Comparative Study of Point Load Index Test Procedures in Predicting the Uniaxial Compressive Strength of Sandstones,” Rock Mech. Rock. Eng., vol. 55, pp. 4507–4516, Jul. 2022, doi: 10.1007/S00603-022-02877-W.
  • [5] D. Akbay, “Antalya-Kemer-Tekirova Karayolu Güzergâhinda Bulunan Altan Ayağ Tünelindeki (T3 Tüneli) Delik Delme Performans Analizi,” M.S. thesis, Dept. Min. Eng., Süleyman Demirel Uni., Isparta, Türkiye, 2013.
  • [6] D. Akbay and R. Altındağ, “Reliability and evaluation of point load index values obtained from different testing devices,” J. South Afr. Inst. Min. Metall., vol. 120, no. 3, pp. 181–190, 2020.
  • [7] J. A. Franklin, E. Broch, and G. Walton, “Logging the Mechanical Character of Rock,” Transactions of the Institution of Mining and Metallurgy, vol. 80, no. A, pp. 1–9, 1971.
  • [8] G. Wijk, G. Rehbinder, and G. Lögdström, “The relation between the uniaxial tensile strength and the sample size for bohus granite,” Rock Mechanics Felsmechanik Mecanique des Roches, vol. 10, no. 4, pp. 201–219, 1978, doi: 10.1007/BF01891959.
  • [9] S. H. Al-Jassar and A. B. Hawkins, “Geotechnical Properties of The Carboniferous Limestone of The Bristol Area The Influence of Petrography And Chemistry,” in 4th ISRM Congr., 2-8 September, Montreux, Switzerland, 1979, pp. 3–14.
  • [10] N. Brook, “Size Correction for Point Load Testing,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 17, no. 2, pp. 231–235, 1980.
  • [11] E. Broch and J. A. Franklin, “The Point-Load Strength Test,” Int. J. Rock Mech. Min. Sci., vol. 9, pp. 669–697, 1972.
  • [12] M. Greminger, “Experimental studies of the influence of rock anisotropy on size and shape effects in point-load testing,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 19, no. 5, pp. 241–246, 1982, doi: 10.1016/0148-9062(82)90222-4.
  • [13] I. R. Forster, “The influence of core sample geometry on the axial point-load test,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 20, no. 6, pp. 291–295, 1983, doi: 10.1016/0148-9062(83)90599-5.
  • [14] E. Broch, “Estimation of strength anisotropy using the point-load test,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., vol. 20, no. 4, pp. 181–187, 1983, doi: 10.1016/0148-9062(83)90942-7.
  • [15] ISRM Comission of Laboratory Tests, “Suggested Methods for Determining Point-Load Strength, Document 1,” Lisbon, 1973.
  • [16] N. Brook, “The equivalent core diameter method of size and shape correction in point load testing,” Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., vol. 22, no. 2, pp. 61–70, 1985, doi: 10.1016/0148-9062(85)92328-9.
  • [17] T. Abdallah, “Towards a Realistic Methodology of Modelling a Rock Blasting Pattern,” in Türkiye XIII. Madencilik Kong., 1993, pp. 289–300.
  • [18] K. T. Chau, “Analytic solutions for diametral point load strength tests,” J. Eng. Mech., vol. 124, no. 8, pp. 875–883, 1998, Accessed: Nov. 23, 2017, doi/pdf/10.1061/(ASCE)0733-9399(1998)124:8(875)
  • [19] X. X. Wei, K. T. Chau, and R. H. C. Wong, “Analytic solution for axial point load strength test on solid circular cylinders,” J. Eng. Mech., vol. 125, no. 12, pp. 1349–1357, 1999, Accessed: Nov. 23, 2017. [Online]. Available: http://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9399(1999)125:12(1349)
  • [20] K. T. Chau and X. X. Wei, “New analytic solution for the diametral point load strength test on finite solid circular cylinders,” Int. J. Solids. Struct., vol. 38, no. 9, pp. 1459–1481, 2001, doi: 10.1016/S0020-7683(00)00122-0.
  • [21] A. Zacoeb and K. Ishibashi, “Point Load Test Application for Estimating Compressive Strength of Concrete Structures From Small Core,” ARPN J. Eng. Appl. Sci., vol. 4, no. 7, pp. 46–57, 2009.
  • [22] J. K. Li, F. F. Li, and X. K. Wei, “The effect of specimen’s height on the point load test,” Adv Mat Res, vol. 848, pp. 108–111, 2014, doi: 10.4028/www.scientific.net/AMR.848.108.
  • [23] M. Forbes, H. Masoumi, S. Saydam, and P. Hagan, “Investigation into the effect of length to diameter ratio on the point load strength index of Gosford sandstone,” in 49th US Rock Mechanics / Geomechanics Symp., San Francisco, CA, USA, 28 June-1 July, 2015, pp. 1–11.
  • [24] H. Masoumi, H. Roshan, A. Hedayat, and P. C. Hagan, “Scale-Size Dependency of Intact Rock under Point-Load and Indirect Tensile Brazilian Testing,” Int. J. Geomech., vol. 18, no. 3, p. 04018006, Mar. 2018, doi: 10.1061/(asce)gm.1943-5622.0001103.
  • [25] ISRM, “Suggested Method for Determining Point Load Strength,” in ISRM, U. R. and H. J.A., Eds., London: Springer, 1985, pp. 53–60.
  • [26] Natural stone test methods - Determination of water absorption coefficient by capillarity, TS EN 1925, TSE, Ankara. 2000. [Online]. Available: https://www.tse.org.tr/
  • [27] Natural stone test methods - Determination of sound speed propagation, TS EN 14579, TSE, Ankara. 2006. Available: https://www.tse.org.tr/
  • [28] Natural stone test methods - Determination of uniaxial compressive strength, TS EN 1926, TSE, Ankara. 2013. Available: https://www.tse.org.tr/
There are 28 citations in total.

Details

Primary Language English
Subjects Rock Mechanics and Fortification
Journal Section Araştırma Makalesi
Authors

Deniz Akbay 0000-0002-7794-5278

Early Pub Date December 25, 2023
Publication Date December 28, 2023
Submission Date October 30, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2023

Cite

IEEE D. Akbay, “Evaluating the Effect of Diameter-to-Length Ratio in Point Load Index Test on Predicting Uniaxial Compressive Strength”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 4, pp. 1289–1297, 2023, doi: 10.17798/bitlisfen.1383335.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS