Research Article
BibTex RIS Cite
Year 2024, , 750 - 771, 26.09.2024
https://doi.org/10.17798/bitlisfen.1482456

Abstract

References

  • [1] V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • [2] R. Mohmmed, F. Zhang, B. Sun, and B. Gu, “Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets,” Mater Des, vol. 47, pp. 189–199, 2013, doi: 10.1016/j.matdes.2012.12.016.
  • [3] J. Liu, W. He, D. Xie, and B. Tao, “The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures,” Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • [4] İ. Bozkurt, M. Kaman, and M. Albayrak, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” pp. 3–7, 2022.
  • [5] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Determination of LS-DYNA MAT162 Material Input Parameters for Low Velocity Impact Analysis of Layered Composites,” pp. 39–43, 2022.
  • [6] L. Ballère, P. Viot, J. L. Lataillade, L. Guillaumat, and S. Cloutet, “Damage tolerance of impacted curved panels,” Int J Impact Eng, vol. 36, no. 2, pp. 243–253, Feb. 2009, doi: 10.1016/J.IJIMPENG.2008.03.004.
  • [7] R. F. Alshahrani, N. Merah, S. M. A. Khan, and Y. Al-Nassar, “On the impact-induced damage in glass fiber reinforced epoxy pipes,” Int J Impact Eng, vol. 97, pp. 57–65, Nov. 2016, doi: 10.1016/j.ijimpeng.2016.06.002.
  • [8] M. N. Saleh, H. M. El-Dessouky, M. Saeedifar, S. T. De Freitas, R. J. Scaife, and D. Zarouchas, “Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites,” Compos Part A Appl Sci Manuf, vol. 125, Oct. 2019, doi: 10.1016/j.compositesa.2019.105576.
  • [9] J. Krollmann, T. Schreyer, M. Veidt, and K. Drechsler, “Impact and post-impact properties of hybrid-matrix laminates based on carbon fiber-reinforced epoxy and elastomer subjected to low-velocity impacts,” Compos Struct, vol. 208, no. August 2018, pp. 535–545, 2019, doi: 10.1016/j.compstruct.2018.09.087.
  • [10] A. P. Christoforou and A. S. Yigit, “Scaling of low-velocity impact response in composite structures,” Compos Struct, vol. 91, no. 3, pp. 358–365, Dec. 2009, doi: 10.1016/J.COMPSTRUCT.2009.06.002.
  • [11] A. Khodadadi et al., “Numerical and experimental study of impact on hyperelastic rubber panels,” Iranian Polymer Journal (English Edition), vol. 28, no. 2, pp. 113–122, Feb. 2019, doi: 10.1007/s13726-018-0682-x.
  • [12] Y. Li, F. Wang, X. Shi, L. Guo, and C. Huang, “Impact Response of 3D Orthogonal Woven Composites with Different Fiber Types,” Applied Composite Materials, 2023, doi: 10.1007/s10443-023-10150-8.
  • [13] B. Kazemianfar, M. Esmaeeli, and M. R. Nami, “Response of 3D woven composites under low velocity impact with different impactor geometries,” Aerosp Sci Technol, vol. 102, Jul. 2020, doi: 10.1016/j.ast.2020.105849.
  • [14] M. Y. Solmaz and T. Topkaya, “The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts,” Applied Sciences (Switzerland), vol. 10, no. 20, pp. 1–14, 2020, doi: 10.3390/app10207262.
  • [15] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • [16] W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” Int J Mech Sci, vol. 161–162, no. July, p. 105026, 2019, doi: 10.1016/j.ijmecsci.2019.105026.
  • [17] W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, “Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures,” Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • [18] Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos B Eng, vol. 142, no. December 2016, pp. 159–170, 2018, doi: 10.1016/j.compositesb.2018.01.020.
  • [19] X. Zhang, F. Xu, Y. Zang, and W. Feng, “Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact,” Compos Struct, vol. 236, no. January, p. 111882, 2020, doi: 10.1016/j.compstruct.2020.111882.
  • [20] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation,” Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • [21] T. K. Demircioğlu, F. Balıkoğlu, O. İnal, N. Arslan, Ay, and A. Ataş, “Experimental investigation on low-velocity impact response of wood skinned sandwich composites with different core configurations,” Mater Today Commun, vol. 17, no. May, pp. 31–39, 2018, doi: 10.1016/j.mtcomm.2018.08.003.
  • [22] J. Wang, A. M. Waas, and H. Wang, “Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels,” Compos Struct, vol. 96, pp. 298–311, 2013, doi: 10.1016/j.compstruct.2012.09.002.
  • [23] Y. Rong, J. Liu, W. Luo, and W. He, “Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels,” Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • [24] J. Zhou, M. Z. Hassan, Z. Guan, and W. J. Cantwell, “The low velocity impact response of foam-based sandwich panels,” Compos Sci Technol, vol. 72, no. 14, pp. 1781–1790, 2012, doi: 10.1016/j.compscitech.2012.07.006.
  • [25] A. Manes, A. Gilioli, C. Sbarufatti, and M. Giglio, “Experimental and numerical investigations of low velocity impact on sandwich panels,” Compos Struct, vol. 99, pp. 8–18, 2013, doi: 10.1016/j.compstruct.2012.11.031.
  • [26] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer,” Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • [27] M. Albayrak, M. O. Kaman, and I. Bozkurt, “The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites,” J Compos Mater, vol. 57, no. 11, pp. 1875–1908, 2023, doi: 10.1177/00219983231164950.
  • [28] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types,” Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • [29] X. Xue, C. Zhang, W. Chen, M. Wu, and J. Zhao, “Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass,” Compos Struct, vol. 226, no. May, p. 111223, 2019, doi: 10.1016/j.compstruct.2019.111223.
  • [30] M. R. Yellur, H. Seidlitz, F. Kuke, K. Wartig, and N. Tsombanis, “A low velocity impact study on press formed thermoplastic honeycomb sandwich panels,” Compos Struct, vol. 225, no. November 2018, p. 111061, 2019, doi: 10.1016/j.compstruct.2019.111061.
  • [31] J. Susainathan, F. Eyma, E. DE Luycker, A. Cantarel, and B. Castanie, “Numerical modeling of impact on wood-based sandwich structures,” Mechanics of Advanced Materials and Structures, vol. 27, no. 18, pp. 1583–1598, Sep. 2020, doi: 10.1080/15376494.2018.1519619.
  • [32] P. A. Shirbhate and M. D. Goel, “Investigation of effect of perforations in honeycomb sandwich structure for enhanced blast load mitigation,” Mechanics of Advanced Materials and Structures, vol. 30, no. 17, pp. 3463–3478, 2023, doi: 10.1080/15376494.2022.2076958.
  • [33] H. E. Yalkın, R. Karakuzu, and T. Alpyıldız, “Low-velocity impact behaviors of sandwich composites with different structural configurations of foam core: numerical study and experimental validation,” Phys Scr, vol. 98, no. 11, Nov. 2023, doi: 10.1088/1402-4896/ad008f.
  • [34] M. Nouri Damghani and A. Mohammadzadeh Gonabadi, “Numerical study of energy absorption in aluminum foam sandwich panel structures using drop hammer test,” Journal of Sandwich Structures and Materials, vol. 21, no. 1, pp. 3–18, Jan. 2019, doi: 10.1177/1099636216685315.
  • [35] H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation; . [24]. 2017.
  • [36] F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, “Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact,” Central European Journal of Engineering, vol. 2, no. 4, pp. 612–626, 2012, doi: 10.2478/S13531-012-0018-0.
  • [37] M. Albayrak and M. O. Kaman, “Production of Curved Surface Composites Reinforced With Rubber Layer,” European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • [38] A. M. Bozkurt İ, Kaman MO, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” 2022.
  • [39] K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos B Eng, vol. 63, pp. 111–122, 2014, doi: 10.1016/j.compositesb.2014.03.011.
  • [40] W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Structures, vol. 137, no. August 2018, pp. 411–432, 2019, doi: 10.1016/j.tws.2019.01.022.
  • [41] Y. Duan, Z. Cui, X. Xie, Y. Tie, T. Zou, and T. Wang, “Mechanical characteristics of composite honeycomb sandwich structures under oblique impact,” Theoretical and Applied Mechanics Letters, vol. 12, no. 5, p. 100379, Sep. 2022, doi: 10.1016/J.TAML.2022.100379.

Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures

Year 2024, , 750 - 771, 26.09.2024
https://doi.org/10.17798/bitlisfen.1482456

Abstract

The aim of this study is to examine the impact performance and damage behavior of sandwich composite structures with a core material of aluminum and a facesheet of glass fiber composites using the finite element method. In the study, the effects of impactor shape, impact velocity and number of core layers on peak force, absorbed energy efficiency, maximum displacement and damage deformation were examined. For low velocity impact simulation, progressive damage analysis was performed based on the Hashin damage criterion using the MAT 54 material model in the LS DYNA finite element program. While providing the connection between the core structure and its surfaces, a Cohesive Zone Model (CZM) based on the bilinear traction-separation law was created and examined. At the end of the study, it was determined that the shape of the impactor had a significant effect on impact resistance. Energy absorption efficiency may vary as impact energy changes. However, as the impact energy increases, the energy absorption efficiency increases. It was determined that the largest and dominant damage type for all three impactors was matrix damage.

References

  • [1] V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • [2] R. Mohmmed, F. Zhang, B. Sun, and B. Gu, “Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets,” Mater Des, vol. 47, pp. 189–199, 2013, doi: 10.1016/j.matdes.2012.12.016.
  • [3] J. Liu, W. He, D. Xie, and B. Tao, “The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures,” Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • [4] İ. Bozkurt, M. Kaman, and M. Albayrak, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” pp. 3–7, 2022.
  • [5] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Determination of LS-DYNA MAT162 Material Input Parameters for Low Velocity Impact Analysis of Layered Composites,” pp. 39–43, 2022.
  • [6] L. Ballère, P. Viot, J. L. Lataillade, L. Guillaumat, and S. Cloutet, “Damage tolerance of impacted curved panels,” Int J Impact Eng, vol. 36, no. 2, pp. 243–253, Feb. 2009, doi: 10.1016/J.IJIMPENG.2008.03.004.
  • [7] R. F. Alshahrani, N. Merah, S. M. A. Khan, and Y. Al-Nassar, “On the impact-induced damage in glass fiber reinforced epoxy pipes,” Int J Impact Eng, vol. 97, pp. 57–65, Nov. 2016, doi: 10.1016/j.ijimpeng.2016.06.002.
  • [8] M. N. Saleh, H. M. El-Dessouky, M. Saeedifar, S. T. De Freitas, R. J. Scaife, and D. Zarouchas, “Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites,” Compos Part A Appl Sci Manuf, vol. 125, Oct. 2019, doi: 10.1016/j.compositesa.2019.105576.
  • [9] J. Krollmann, T. Schreyer, M. Veidt, and K. Drechsler, “Impact and post-impact properties of hybrid-matrix laminates based on carbon fiber-reinforced epoxy and elastomer subjected to low-velocity impacts,” Compos Struct, vol. 208, no. August 2018, pp. 535–545, 2019, doi: 10.1016/j.compstruct.2018.09.087.
  • [10] A. P. Christoforou and A. S. Yigit, “Scaling of low-velocity impact response in composite structures,” Compos Struct, vol. 91, no. 3, pp. 358–365, Dec. 2009, doi: 10.1016/J.COMPSTRUCT.2009.06.002.
  • [11] A. Khodadadi et al., “Numerical and experimental study of impact on hyperelastic rubber panels,” Iranian Polymer Journal (English Edition), vol. 28, no. 2, pp. 113–122, Feb. 2019, doi: 10.1007/s13726-018-0682-x.
  • [12] Y. Li, F. Wang, X. Shi, L. Guo, and C. Huang, “Impact Response of 3D Orthogonal Woven Composites with Different Fiber Types,” Applied Composite Materials, 2023, doi: 10.1007/s10443-023-10150-8.
  • [13] B. Kazemianfar, M. Esmaeeli, and M. R. Nami, “Response of 3D woven composites under low velocity impact with different impactor geometries,” Aerosp Sci Technol, vol. 102, Jul. 2020, doi: 10.1016/j.ast.2020.105849.
  • [14] M. Y. Solmaz and T. Topkaya, “The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts,” Applied Sciences (Switzerland), vol. 10, no. 20, pp. 1–14, 2020, doi: 10.3390/app10207262.
  • [15] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • [16] W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, “Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact,” Int J Mech Sci, vol. 161–162, no. July, p. 105026, 2019, doi: 10.1016/j.ijmecsci.2019.105026.
  • [17] W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, “Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures,” Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • [18] Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, “Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings,” Compos B Eng, vol. 142, no. December 2016, pp. 159–170, 2018, doi: 10.1016/j.compositesb.2018.01.020.
  • [19] X. Zhang, F. Xu, Y. Zang, and W. Feng, “Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact,” Compos Struct, vol. 236, no. January, p. 111882, 2020, doi: 10.1016/j.compstruct.2020.111882.
  • [20] W. He, J. Liu, S. Wang, and D. Xie, “Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation,” Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • [21] T. K. Demircioğlu, F. Balıkoğlu, O. İnal, N. Arslan, Ay, and A. Ataş, “Experimental investigation on low-velocity impact response of wood skinned sandwich composites with different core configurations,” Mater Today Commun, vol. 17, no. May, pp. 31–39, 2018, doi: 10.1016/j.mtcomm.2018.08.003.
  • [22] J. Wang, A. M. Waas, and H. Wang, “Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels,” Compos Struct, vol. 96, pp. 298–311, 2013, doi: 10.1016/j.compstruct.2012.09.002.
  • [23] Y. Rong, J. Liu, W. Luo, and W. He, “Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels,” Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • [24] J. Zhou, M. Z. Hassan, Z. Guan, and W. J. Cantwell, “The low velocity impact response of foam-based sandwich panels,” Compos Sci Technol, vol. 72, no. 14, pp. 1781–1790, 2012, doi: 10.1016/j.compscitech.2012.07.006.
  • [25] A. Manes, A. Gilioli, C. Sbarufatti, and M. Giglio, “Experimental and numerical investigations of low velocity impact on sandwich panels,” Compos Struct, vol. 99, pp. 8–18, 2013, doi: 10.1016/j.compstruct.2012.11.031.
  • [26] M. Albayrak, M. O. Kaman, and I. Bozkurt, “Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer,” Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • [27] M. Albayrak, M. O. Kaman, and I. Bozkurt, “The effect of lamina configuration on low-velocity impact behaviour for glass fiber/rubber curved composites,” J Compos Mater, vol. 57, no. 11, pp. 1875–1908, 2023, doi: 10.1177/00219983231164950.
  • [28] I. Bozkurt, M. O. Kaman, and M. Albayrak, “Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types,” Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • [29] X. Xue, C. Zhang, W. Chen, M. Wu, and J. Zhao, “Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass,” Compos Struct, vol. 226, no. May, p. 111223, 2019, doi: 10.1016/j.compstruct.2019.111223.
  • [30] M. R. Yellur, H. Seidlitz, F. Kuke, K. Wartig, and N. Tsombanis, “A low velocity impact study on press formed thermoplastic honeycomb sandwich panels,” Compos Struct, vol. 225, no. November 2018, p. 111061, 2019, doi: 10.1016/j.compstruct.2019.111061.
  • [31] J. Susainathan, F. Eyma, E. DE Luycker, A. Cantarel, and B. Castanie, “Numerical modeling of impact on wood-based sandwich structures,” Mechanics of Advanced Materials and Structures, vol. 27, no. 18, pp. 1583–1598, Sep. 2020, doi: 10.1080/15376494.2018.1519619.
  • [32] P. A. Shirbhate and M. D. Goel, “Investigation of effect of perforations in honeycomb sandwich structure for enhanced blast load mitigation,” Mechanics of Advanced Materials and Structures, vol. 30, no. 17, pp. 3463–3478, 2023, doi: 10.1080/15376494.2022.2076958.
  • [33] H. E. Yalkın, R. Karakuzu, and T. Alpyıldız, “Low-velocity impact behaviors of sandwich composites with different structural configurations of foam core: numerical study and experimental validation,” Phys Scr, vol. 98, no. 11, Nov. 2023, doi: 10.1088/1402-4896/ad008f.
  • [34] M. Nouri Damghani and A. Mohammadzadeh Gonabadi, “Numerical study of energy absorption in aluminum foam sandwich panel structures using drop hammer test,” Journal of Sandwich Structures and Materials, vol. 21, no. 1, pp. 3–18, Jan. 2019, doi: 10.1177/1099636216685315.
  • [35] H. JO., LS-DYNA Keyword User’s Manual Volume II Material Models, Version 971. Livermore Software Technology Corporation; . [24]. 2017.
  • [36] F. Dogan, H. Hadavinia, T. Donchev, and P. S. Bhonge, “Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact,” Central European Journal of Engineering, vol. 2, no. 4, pp. 612–626, 2012, doi: 10.2478/S13531-012-0018-0.
  • [37] M. Albayrak and M. O. Kaman, “Production of Curved Surface Composites Reinforced With Rubber Layer,” European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • [38] A. M. Bozkurt İ, Kaman MO, “LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022.,” 2022.
  • [39] K. Malekzadeh Fard, S. M. R. Khalili, S. H. Forooghy, and M. Hosseini, “Low velocity transverse impact response of a composite sandwich plate subjected to a rigid blunted cylindrical impactor,” Compos B Eng, vol. 63, pp. 111–122, 2014, doi: 10.1016/j.compositesb.2014.03.011.
  • [40] W. He, L. Yao, X. Meng, G. Sun, D. Xie, and J. Liu, “Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets,” Thin-Walled Structures, vol. 137, no. August 2018, pp. 411–432, 2019, doi: 10.1016/j.tws.2019.01.022.
  • [41] Y. Duan, Z. Cui, X. Xie, Y. Tie, T. Zou, and T. Wang, “Mechanical characteristics of composite honeycomb sandwich structures under oblique impact,” Theoretical and Applied Mechanics Letters, vol. 12, no. 5, p. 100379, Sep. 2022, doi: 10.1016/J.TAML.2022.100379.
There are 41 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation
Journal Section Araştırma Makalesi
Authors

İlyas Bozkurt 0000-0001-7850-2308

Early Pub Date September 20, 2024
Publication Date September 26, 2024
Submission Date May 11, 2024
Acceptance Date September 18, 2024
Published in Issue Year 2024

Cite

IEEE İ. Bozkurt, “Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, pp. 750–771, 2024, doi: 10.17798/bitlisfen.1482456.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS