NiO Nanoparticles Via Calcination of Dithiocarbamate Pioneers: Characterization and Photocatalytic Activity
Year 2024,
, 969 - 978, 31.12.2024
Ayşegül Şenocak
,
Hüseyin Akbaş
,
Beyza İşgör
Abstract
By this work, the preparation of NiO nanoparticles (NPs) from a dithiocarbamate complex through calcination, both a cost-effective and practical way for NPs synthesis, was presented. This preparation process involves the decomposition of the precursor to yield highly pure and crystalline NPs. The dithiocarbamate complex was synthesized in a sequential reaction starting from p-anisaldehyde and 3-aminopropanol. Particle size of the NPs, whose formation was confirmed by FT-IR spectroscopy and UV-Vis spectroscopy, were calculated as 10.97 nm using Debye-Scherer equation from X-ray Diffraction Spectroscopy (XRD). In addition, Scanning Electron Microscopy (SEM) revealed generally aggregated and spherical particles, which are stable in colloidal environment according to -15.1 zeta potential value. Besides, the NPs were employed as a photocatalyst for the decomposition of Methylene Blue (MB), one of the most frequently used synthetic dyes in industry and, at the same time, one of the primary water pollutants, resulting in 38% degradation rate.
Ethical Statement
The study is complied with research and publication ethics.
Supporting Institution
TUBİTAK
Project Number
TUBİTAK 2209-A-1919B012206215
Thanks
The authors would like to thank to TUBİTAK (the Scientific and Technological Research Council of Türkiye) for supporting this study through the 2209-A Research Project Support Programme for Undergrad-uate Students (Project Number: 1919B012206215).
References
- [1] S. D. Oladipo, B. Omondi, and C. Mocktar, “Synthesis and structural studies of nickel(II)- and copper(II)-N,N′-diarylformamidine dithiocarbamate complexes as antimicrobial and antioxidant agents”, Polyhedron, vol. 170, pp. 712-722, 2019.
- [2] G. Hogarth, “Metal-dithiocarbamate complexes: chemistry and biological activity”, Mini-Rev. Med. Chem., vol. 12, no. 12, pp. 1202-1215, 2012.
- [3] M. Shahid, T. Rüffer, H. Lang, S. A. Awan, and S. Ahmad, “Synthesis and crystal structure of a dinuclear zinc(II)-dithiocarbamate complex, bis{[(µ2-pyrrolidinedithiocar-bamato-S,S’)(pyrrolidinedithio- carbamato-S,S’)zinc(II)]}”, J. Coord. Chem., vol. 62, no. 3, pp. 440-445, 2009.
- [4] J. C. Sarker, and G. Hogarth, “Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides”, Chem. Rev., vol. 121, no. 10, pp. 6057-6123, 2021.
- [5] T. A. Saiyed, J. O. Adeyemi, and D. C. Onwudi, “The structural chemistry of zinc(II) and nickel(II) dithiocarbamate complexes”, Open Chem., vol. 19, pp. 974-986, 2021.
- [6] P. D. Beer, A. G. Cheetham, M. G. B. Drew, O. D. Fox, E. J. Hayes, and T. D. Rolls, “Pyrrole-based metallo-macrocycles and cryptands”, Dalton T., pp. 603-61, 2003.
- [7] E. Sathiyaraj, G. Gurumoorthy, and S. Thirumaran, “Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles”, New J. Chem., vol. 39, pp. 5336-5349, 2015.
- [8] P. Ferreira, G. M. Lima, E. B. Paniago, J. A. Takahashi, and C. B. Pinheiro, “Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni(II), Pd(II) and Pt(II)”, Inorg. Chim. Acta, vol. 423(A), pp. 443-449, 2014.
- [9] V. A. Fitsanakis, V. Amarnath, J. T. Moore, K. S. Montine, J. Zhang, and T. J. Montine, “Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides”, Free Radical Bio. and Med., vol. 33, no. 12, pp. 1714-1723, 2002.
- [10] D. C. Onwudiwe, and A. C. Ekennia, “Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates”, Res. Chem. Intermediat., vol. 43, pp.1465-1485, 2017.
[11] S. M. Mambaa, A. K. Mishraa, B. B. Mambaa, P. B. Njobehb, M. F. Duttonb, and E. Fosso-Kankeu, “Spectral, thermal and in vitro antimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes”, Spectrochim. Acta A, vol. 77, pp. 579-587, 2010.
- [12] I. Ali, W. A. Wani, K. Saleem, and M. -F. Hseih, “Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents”, Polyhedron, vol. 56, pp. 134-143, 2013.
- [13] S. Balakrishnan, S. Duraisamy, M. Kasi, S. Kandasamy, R. Sarkar, and A. Kumarasamy, “Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands”, Heliyon, vol. 5, no. 5, pp. e01687, 2019.
- [14] A. C. Ekennia, D. C. Onwudiwe, and A. A. Osowole, “Spectral, thermal stability and antibacterial studies of copper, nickel and cobalt complexes of N-methyl-N-phenyl dithiocarbamate”, J. Sulfur Chem., vol. 36, no. 1, pp. 96-104, 2015.
- [15] A. Pastrana-Dávila, A. Amaya-Flórez, C. Aranaga, J. Ellena, M. Macías, E. Flórez-López, and R. F. D'Vries, “Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds”, J. Molec. Struct., vol. 1245, pp. 131109, 2021.
- [16] A. Singh, L. B. Prasad, K. Shiv, R. Kumar, and S. Garai, “Synthesis, characterization, and in vitro antibacterial and cytotoxic study of Co(II), Ni(II), Cu(II), and Zn(II) complexes of N-(4-methoxybenzyl) N-(phenylethyl) dithiocarbamate ligand”, J. Molec. Struct., vol. 1288, pp. 135835, 2023.
- [17] M. M. Hrubaru, E. Bartha, A. C. Ekennia, S. N. Okafor, C. D. Badiceanu, D. A. Udu, D. C. Onwudiwe, S. Shova, and C. Draghici, “Ni(II), Pd(II) and Pt(II) complexes of N,N-bis(3,3-dimethyl-allyl)-dithiocarbamate: Synthesis, spectroscopic characterization, antimicrobial and molecular docking studies”, J. Molec. Struct., vol. 1250, no. 1, pp. 131649, 2022.
- [18] A. Nqombolo, and P. A. Ajibade, “Synthesis and Spectral Studies of Ni(II) Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals”, J. Chem.-NY, vol. 2016, pp. 1293790, 2016.
- [19] D. C. Onwudiwe, N. H. Seheri, L. Hlungwani, H. Ferjani, and R. Rikhotso-Mbungela, “NiO nanoparticles by thermal decomposition of complex and evaluation of the structural, morphological, and optical properties”, J. Mol. Struct., vol 1317, pp. 139084, 2024.
- [20] V. K. Maurya, L. B. Prasad, A. Singh, K. Shiv, and A. Prasad, “Synthesis, spectroscopic characterization, biological activity, and conducting properties of functionalized Ni(II) dithiocarbamate complexes with solvent extraction studies of the ligands” J. Sulphur Chem., vol 44 no.3, pp 336–353, 2022.
- [21] E. Sathiyaraj, S. Thirumaran, S. Ciattini, and S. Selvanayagam, “Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles”, Inorg. Chim. Acta, vol. 498, pp. 119162, 2019.
- [22] F. F. Bobinihi, O. E. Fayemi, and D. C. Onwudiwe, “Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate”, Mater. Sci. Semicond. Process., vol. 121, pp. 105315, 2021.
- [23] P. Lakshmanan, R. Arulmozhi, S. Thirumaran, and S. Ciattini, “Ni(II) dithiocarbamate: Synthesis, crystal structures, DFT studies and applications as precursors for nickel sulfide and nickel oxide nanoparticles”, Polyhedron, vol. 218, pp. 115766, 2022.
- [24] H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, and X. Li, “Multi-shelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances”, J. Alloy. Comp., vol. 685, pp. 8-14, 2016.
- [25] K. N. Patel, M. P. Deshpande, V. P. Gujarati, S. Pandya, V. Sathe, and S. H. Chaki, “Structural and optical analysis of Fe doped NiO nanoparticles synthesized by chemical precipitation route”, Mater. Res. Bull., vol. 106, pp. 187-196, 2018.
- [26] G. Grivani, M. Vakili, A. D. Khalaji, G. Bruno, H. A. Rudbari, M. Taghavi, and V. Tahmasebi, “Synthesis, characterization, crystal structure determination, computational study, and thermal decomposition into NiO nano-particles of a new NiIIL2 Schiff base complex (L = 2-{(E)-[2-chloroethyl)imino] methyl phenolate)”, J. Molec. Struct., vol. 1072, pp. 77-83, 2014.
- [27] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, “Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities”, J. Mater. Sci.-Mater. El., vol. 29, pp. 5459-5471, 2018.
- [28] A. Salehirad, “Synthesis of high surface area NiO nanoparticles through thermal decomposition of mixed ligand Ni(II) Complex, [Ni(binol)(bpy)].CH3OH”, Russ. J. Appl. Chem., vol. 89, pp. 63-69, 2016.
- [29] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar, “A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation”, Water Air Soil Pollut., vol. 234, no.6, pp. 349, 2023.
- [30] M. Y. Nassar, H. M. Aly, E. A. Abdelrahman, and M. E. Moustafa, “Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye”, J. Mol. Struct., vol. 1143, pp. 462-471, 2017.
- [31] Z. Sabouri, A. Akbari, H. A. Hosseini, M. Khatami, and M. Darroudi, “Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity”, Polyhedron, vol. 178, pp. 114351, 2020.
- [32] M. Darbandi, M. Eynollahi, N. Badri, M. F. Mohajer, and Z. A. Li, “NiO nanoparticles with superior sonophotocatalytic performance in organic pollutant degradation”, J. Alloy. Comp., vol. 889, pp. 161706, 2021.
- [33] Z. Sabouri, A. Akbari, H. A. Hosseini, A. Hashemzadeh, and M. Darroudi, “Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects”, J. Molec. Struct., vol. 1191, pp. 101-109, 2019.
- [34] E. Sathiyaraj, P. Valarmathi, S. Thirumaran, S. Ciattini, V. K. Gupta, and R. Kant, “Effect of N-Bound Organic Moiety in Dithiocarbamate (R2NCS−2) and trans Influence of Triphenylphosphine on NiS2PN Chromophore”, Phosphorus, Sulfur Relat. Elem., vol. 190, no. 7, pp. 1127-1137, 2015.
- [35] M. Abdur Rahman, R. Radhakrishnan, and R. Gopalakrishnan, “Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method”, J. Alloy. Comp., vol. 742, pp. 421-429, 2018.
- [36] M. A. J. Kouhbanani, Y. Sadeghipour, M. Sarani, E. Sefidgar, S. Ilkhani, A. M. Amani, and N. Beheshtkhoo, “The inhibitory role of synthesized Nickel oxide nanoparticles against Hep-G2, MCF-7, and HT-29 cell lines: the inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines”, Green Chem. Lett. Rev., vol. 14, no. 3, pp. 444-454, 2021.
- [37] E. Gobinath, M. Dhatchinamoorthy, P. Saran, D. Vishnu, R. Indumathy, and G. Kalaiarasi, “Synthesis and characterization of NiO nanoparticles using Sesbania grandiflora flower to evaluate cytotoxicity”, Results Chem., vol. 6, pp. 101043, 2023.
- [38] F. F. Bobinihi, D. C. Onwudiwe, and E. C. Hosten, “Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles”, J. Molec. Struct., vol. 1164, pp. 475-485, 2018.
- [39] A. A. Barzinjy, S. M. Hamad, S. Aydın, M. H. Ahmed, and F. H. S. Hussain, “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation”, J. Mater. Sci.-Mater. El., vol. 31, pp. 11303-11316, 2020.
- [40] R. S. Kumar, S. J. Jeyakumar, M. Jothibas, I. K. Punithavathy, and J. P. Richard, “Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles”, J. Mater. Sci.-Mater. El., vol. 28, pp. 15668-15675, 2017.
- [41] M. El-Kemary, N. Nagy, and I. El-Mehasseb, “Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose”, Mater. Sci. Semicond. Process., vol. 16, pp. 1747-1752, 2013.
- [42] A. K. Ramasami, M. V. Reddy, and G. R. Balakrishna, “Combustion synthesis and characterization of NiO nanoparticles”, Mater. Sci. Semicond. Process., vol. 40, pp. 194-202, 2015.
- [43] F. Ascencio, A. Bobadilla, and R. Escudero, “Study of NiO nanoparticles, structural and magnetic characteristics”, Appl. Phys. A, vol. 125, pp. 279, 2019.
- [44] A. B. García, A. Cuesta, M. A. Montes-Morán, A. Martínez-Alonso, and J. M. D. Tascón, “Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers”, J. Colloid. Interf. Sci., vol. 192, pp. 363-367, 1997.
- [45] K. Motene, L. Mahlaule-Glory, N. Ngoepe, M. Mathipa, and N. Hintsho-Mbita, “Photocatalytic degradation of dyes and removal of bacteria using biosynthesised flowerlike NiO nanoparticles”, Int. J. Environ. Anal. Chem., vol. 103, no. 5, pp. 1107-1122, 2021.
Year 2024,
, 969 - 978, 31.12.2024
Ayşegül Şenocak
,
Hüseyin Akbaş
,
Beyza İşgör
Project Number
TUBİTAK 2209-A-1919B012206215
References
- [1] S. D. Oladipo, B. Omondi, and C. Mocktar, “Synthesis and structural studies of nickel(II)- and copper(II)-N,N′-diarylformamidine dithiocarbamate complexes as antimicrobial and antioxidant agents”, Polyhedron, vol. 170, pp. 712-722, 2019.
- [2] G. Hogarth, “Metal-dithiocarbamate complexes: chemistry and biological activity”, Mini-Rev. Med. Chem., vol. 12, no. 12, pp. 1202-1215, 2012.
- [3] M. Shahid, T. Rüffer, H. Lang, S. A. Awan, and S. Ahmad, “Synthesis and crystal structure of a dinuclear zinc(II)-dithiocarbamate complex, bis{[(µ2-pyrrolidinedithiocar-bamato-S,S’)(pyrrolidinedithio- carbamato-S,S’)zinc(II)]}”, J. Coord. Chem., vol. 62, no. 3, pp. 440-445, 2009.
- [4] J. C. Sarker, and G. Hogarth, “Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides”, Chem. Rev., vol. 121, no. 10, pp. 6057-6123, 2021.
- [5] T. A. Saiyed, J. O. Adeyemi, and D. C. Onwudi, “The structural chemistry of zinc(II) and nickel(II) dithiocarbamate complexes”, Open Chem., vol. 19, pp. 974-986, 2021.
- [6] P. D. Beer, A. G. Cheetham, M. G. B. Drew, O. D. Fox, E. J. Hayes, and T. D. Rolls, “Pyrrole-based metallo-macrocycles and cryptands”, Dalton T., pp. 603-61, 2003.
- [7] E. Sathiyaraj, G. Gurumoorthy, and S. Thirumaran, “Nickel(II) dithiocarbamate complexes containing the pyrrole moiety for sensing anions and synthesis of nickel sulfide and nickel oxide nanoparticles”, New J. Chem., vol. 39, pp. 5336-5349, 2015.
- [8] P. Ferreira, G. M. Lima, E. B. Paniago, J. A. Takahashi, and C. B. Pinheiro, “Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni(II), Pd(II) and Pt(II)”, Inorg. Chim. Acta, vol. 423(A), pp. 443-449, 2014.
- [9] V. A. Fitsanakis, V. Amarnath, J. T. Moore, K. S. Montine, J. Zhang, and T. J. Montine, “Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides”, Free Radical Bio. and Med., vol. 33, no. 12, pp. 1714-1723, 2002.
- [10] D. C. Onwudiwe, and A. C. Ekennia, “Synthesis, characterization, thermal, antimicrobial and antioxidant studies of some transition metal dithiocarbamates”, Res. Chem. Intermediat., vol. 43, pp.1465-1485, 2017.
[11] S. M. Mambaa, A. K. Mishraa, B. B. Mambaa, P. B. Njobehb, M. F. Duttonb, and E. Fosso-Kankeu, “Spectral, thermal and in vitro antimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes”, Spectrochim. Acta A, vol. 77, pp. 579-587, 2010.
- [12] I. Ali, W. A. Wani, K. Saleem, and M. -F. Hseih, “Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents”, Polyhedron, vol. 56, pp. 134-143, 2013.
- [13] S. Balakrishnan, S. Duraisamy, M. Kasi, S. Kandasamy, R. Sarkar, and A. Kumarasamy, “Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands”, Heliyon, vol. 5, no. 5, pp. e01687, 2019.
- [14] A. C. Ekennia, D. C. Onwudiwe, and A. A. Osowole, “Spectral, thermal stability and antibacterial studies of copper, nickel and cobalt complexes of N-methyl-N-phenyl dithiocarbamate”, J. Sulfur Chem., vol. 36, no. 1, pp. 96-104, 2015.
- [15] A. Pastrana-Dávila, A. Amaya-Flórez, C. Aranaga, J. Ellena, M. Macías, E. Flórez-López, and R. F. D'Vries, “Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds”, J. Molec. Struct., vol. 1245, pp. 131109, 2021.
- [16] A. Singh, L. B. Prasad, K. Shiv, R. Kumar, and S. Garai, “Synthesis, characterization, and in vitro antibacterial and cytotoxic study of Co(II), Ni(II), Cu(II), and Zn(II) complexes of N-(4-methoxybenzyl) N-(phenylethyl) dithiocarbamate ligand”, J. Molec. Struct., vol. 1288, pp. 135835, 2023.
- [17] M. M. Hrubaru, E. Bartha, A. C. Ekennia, S. N. Okafor, C. D. Badiceanu, D. A. Udu, D. C. Onwudiwe, S. Shova, and C. Draghici, “Ni(II), Pd(II) and Pt(II) complexes of N,N-bis(3,3-dimethyl-allyl)-dithiocarbamate: Synthesis, spectroscopic characterization, antimicrobial and molecular docking studies”, J. Molec. Struct., vol. 1250, no. 1, pp. 131649, 2022.
- [18] A. Nqombolo, and P. A. Ajibade, “Synthesis and Spectral Studies of Ni(II) Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals”, J. Chem.-NY, vol. 2016, pp. 1293790, 2016.
- [19] D. C. Onwudiwe, N. H. Seheri, L. Hlungwani, H. Ferjani, and R. Rikhotso-Mbungela, “NiO nanoparticles by thermal decomposition of complex and evaluation of the structural, morphological, and optical properties”, J. Mol. Struct., vol 1317, pp. 139084, 2024.
- [20] V. K. Maurya, L. B. Prasad, A. Singh, K. Shiv, and A. Prasad, “Synthesis, spectroscopic characterization, biological activity, and conducting properties of functionalized Ni(II) dithiocarbamate complexes with solvent extraction studies of the ligands” J. Sulphur Chem., vol 44 no.3, pp 336–353, 2022.
- [21] E. Sathiyaraj, S. Thirumaran, S. Ciattini, and S. Selvanayagam, “Synthesis and characterization of Ni(II) complexes with functionalized dithiocarbamates: New single source precursors for nickel sulfide and nickel-iron sulfide nanoparticles”, Inorg. Chim. Acta, vol. 498, pp. 119162, 2019.
- [22] F. F. Bobinihi, O. E. Fayemi, and D. C. Onwudiwe, “Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate”, Mater. Sci. Semicond. Process., vol. 121, pp. 105315, 2021.
- [23] P. Lakshmanan, R. Arulmozhi, S. Thirumaran, and S. Ciattini, “Ni(II) dithiocarbamate: Synthesis, crystal structures, DFT studies and applications as precursors for nickel sulfide and nickel oxide nanoparticles”, Polyhedron, vol. 218, pp. 115766, 2022.
- [24] H. Wu, Y. Wang, C. Zheng, J. Zhu, G. Wu, and X. Li, “Multi-shelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances”, J. Alloy. Comp., vol. 685, pp. 8-14, 2016.
- [25] K. N. Patel, M. P. Deshpande, V. P. Gujarati, S. Pandya, V. Sathe, and S. H. Chaki, “Structural and optical analysis of Fe doped NiO nanoparticles synthesized by chemical precipitation route”, Mater. Res. Bull., vol. 106, pp. 187-196, 2018.
- [26] G. Grivani, M. Vakili, A. D. Khalaji, G. Bruno, H. A. Rudbari, M. Taghavi, and V. Tahmasebi, “Synthesis, characterization, crystal structure determination, computational study, and thermal decomposition into NiO nano-particles of a new NiIIL2 Schiff base complex (L = 2-{(E)-[2-chloroethyl)imino] methyl phenolate)”, J. Molec. Struct., vol. 1072, pp. 77-83, 2014.
- [27] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, “Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities”, J. Mater. Sci.-Mater. El., vol. 29, pp. 5459-5471, 2018.
- [28] A. Salehirad, “Synthesis of high surface area NiO nanoparticles through thermal decomposition of mixed ligand Ni(II) Complex, [Ni(binol)(bpy)].CH3OH”, Russ. J. Appl. Chem., vol. 89, pp. 63-69, 2016.
- [29] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar, “A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation”, Water Air Soil Pollut., vol. 234, no.6, pp. 349, 2023.
- [30] M. Y. Nassar, H. M. Aly, E. A. Abdelrahman, and M. E. Moustafa, “Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye”, J. Mol. Struct., vol. 1143, pp. 462-471, 2017.
- [31] Z. Sabouri, A. Akbari, H. A. Hosseini, M. Khatami, and M. Darroudi, “Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity”, Polyhedron, vol. 178, pp. 114351, 2020.
- [32] M. Darbandi, M. Eynollahi, N. Badri, M. F. Mohajer, and Z. A. Li, “NiO nanoparticles with superior sonophotocatalytic performance in organic pollutant degradation”, J. Alloy. Comp., vol. 889, pp. 161706, 2021.
- [33] Z. Sabouri, A. Akbari, H. A. Hosseini, A. Hashemzadeh, and M. Darroudi, “Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects”, J. Molec. Struct., vol. 1191, pp. 101-109, 2019.
- [34] E. Sathiyaraj, P. Valarmathi, S. Thirumaran, S. Ciattini, V. K. Gupta, and R. Kant, “Effect of N-Bound Organic Moiety in Dithiocarbamate (R2NCS−2) and trans Influence of Triphenylphosphine on NiS2PN Chromophore”, Phosphorus, Sulfur Relat. Elem., vol. 190, no. 7, pp. 1127-1137, 2015.
- [35] M. Abdur Rahman, R. Radhakrishnan, and R. Gopalakrishnan, “Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method”, J. Alloy. Comp., vol. 742, pp. 421-429, 2018.
- [36] M. A. J. Kouhbanani, Y. Sadeghipour, M. Sarani, E. Sefidgar, S. Ilkhani, A. M. Amani, and N. Beheshtkhoo, “The inhibitory role of synthesized Nickel oxide nanoparticles against Hep-G2, MCF-7, and HT-29 cell lines: the inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines”, Green Chem. Lett. Rev., vol. 14, no. 3, pp. 444-454, 2021.
- [37] E. Gobinath, M. Dhatchinamoorthy, P. Saran, D. Vishnu, R. Indumathy, and G. Kalaiarasi, “Synthesis and characterization of NiO nanoparticles using Sesbania grandiflora flower to evaluate cytotoxicity”, Results Chem., vol. 6, pp. 101043, 2023.
- [38] F. F. Bobinihi, D. C. Onwudiwe, and E. C. Hosten, “Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles”, J. Molec. Struct., vol. 1164, pp. 475-485, 2018.
- [39] A. A. Barzinjy, S. M. Hamad, S. Aydın, M. H. Ahmed, and F. H. S. Hussain, “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation”, J. Mater. Sci.-Mater. El., vol. 31, pp. 11303-11316, 2020.
- [40] R. S. Kumar, S. J. Jeyakumar, M. Jothibas, I. K. Punithavathy, and J. P. Richard, “Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles”, J. Mater. Sci.-Mater. El., vol. 28, pp. 15668-15675, 2017.
- [41] M. El-Kemary, N. Nagy, and I. El-Mehasseb, “Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose”, Mater. Sci. Semicond. Process., vol. 16, pp. 1747-1752, 2013.
- [42] A. K. Ramasami, M. V. Reddy, and G. R. Balakrishna, “Combustion synthesis and characterization of NiO nanoparticles”, Mater. Sci. Semicond. Process., vol. 40, pp. 194-202, 2015.
- [43] F. Ascencio, A. Bobadilla, and R. Escudero, “Study of NiO nanoparticles, structural and magnetic characteristics”, Appl. Phys. A, vol. 125, pp. 279, 2019.
- [44] A. B. García, A. Cuesta, M. A. Montes-Morán, A. Martínez-Alonso, and J. M. D. Tascón, “Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers”, J. Colloid. Interf. Sci., vol. 192, pp. 363-367, 1997.
- [45] K. Motene, L. Mahlaule-Glory, N. Ngoepe, M. Mathipa, and N. Hintsho-Mbita, “Photocatalytic degradation of dyes and removal of bacteria using biosynthesised flowerlike NiO nanoparticles”, Int. J. Environ. Anal. Chem., vol. 103, no. 5, pp. 1107-1122, 2021.