Research Article
BibTex RIS Cite

Comprehensive Energy and Exergy Analysis of a Pressurized Water Reactor Driven Multi-Stage Flash Desalination Plant

Year 2024, , 1047 - 1066, 31.12.2024
https://doi.org/10.17798/bitlisfen.1500249

Abstract

Nuclear energy-based seawater desalination is an environmentally friendly freshwater production approach. This study introduces a novel thermodynamic model integrating a pressurized water reactor’s (PWR) secondary cycle with a multi-stage flash (MSF) desalination facility to enhance freshwater production. The impacts of the design and operating conditions on thermal efficiency, utilization factor, gain output ratio, exergy efficiency, coefficient of ecological performance for cogeneration and exergy destruction factor are investigated. Results reveal that a higher live steam temperature and a reheater mass flow rate ratio is preferable for a better nuclear desalination performance. A larger freshwater production capacity is preferable for a better utilization factor, however increasing the capacity tends to decrease thermal efficiency, coefficient of ecological performance for cogeneration and exergy destruction factor. The selection of steam extraction location is important for very large scale plants, and the outlet of moisture separator is determined to be the best option. Parametric analysis shows that plant’s performance can be significantly improved by adjusting the design conditions. Thermal and exergy efficiencies of an optimized plant configuration are 3.01% and 4.70% higher, respectively as compared to a base plant. It is also found that steam generator and MSF unit cause 3.2% and 82% of the total irreversibility rate of PWR’s secondary cycle and MSF facility, respectively, and have the highest irreversibility rates for these sections of the plant.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] IAEA, “Introduction of Nuclear Desalination,” International Atomic Energy Agency, Vienna, Austria, Technical Reports Series no. 400, 2000.
  • [2] IAEA, “Status of Nuclear Desalination in IAEA Member States,” International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-1524, 2007.
  • [3] FAO and UN Water, “Progress on Level of Water Stress. Global status and acceleration needs for SDG Indicator 6.4.2,” United Nations, Rome, Italy, 2021.
  • [4] M. A. Rosen, “Nuclear Energy: Non-Electric Applications,” Eur. J. Sust. Dev. Res., vol. 5, no. 1, 2021, Art. no. em0147.
  • [5] EIA, “Electric Power Monthly,” EIA. Accessed: Feb. 5, 2024. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
  • [6] A. Panagopoulos, and K. J. Haralambous, “Environmental impacts of desalination and brine treatment - Challenges and mitigation measures,” Mar. Pollut. Bull., 2020, vol. 161, Dec. 2020, Art. no. 111773.
  • [7] R. S. El-Emam, H. Ozcan, R. Bhattacharyya, and L. Awerbuch, “Nuclear desalination: A sustainable route to water security,” Desalination, vol. 542, Nov. 2022, Art. no. 116082.
  • [8] M. Ayaz, M. A. Namazi, M. Ammad ud Din, M. I. M. Ershath, A. Mansour, and E. M. Aggoune, “Sustainable seawater desalination: Current status, environmental implications and future expectations,” Desalination, vol. 540, Oct. 2022, Art. no. 116022.
  • [9] H. Nassrullah, S. F. Anisa, R. Hashaikeh, and N. Hilal, “Energy for desalination: A state-of-the-art review,” Desalination, vol. 491, Oct. 2020, Art. no. 114569.
  • [10] D. Curto, V. Franzitta, and A. Guercio, “A review of the water desalination technologies,” Appl. Sci., vol. 11, no. 2, Jan. 2021, Art. no. 670.
  • [11] I. G. Sánchez-Cervera, K. C. Kavvadias, and I. Khamis, “DE-TOP: A new IAEA tool for the thermodynamic evaluation of nuclear desalination,” Desalination, vol. 321, pp. 103-109, Jul. 2013.
  • [12] K. C. Kavvadias, and I. Khamis, “The IAEA DEEP desalination economic model: A critical review,” Desalination, vol. 257, pp. 150-157, Jul. 2010.
  • [13] R. S. Faibish, and H. Ettouney, “MSF nuclear desalination,” Desalination, vol. 157, pp. 277-287, Aug. 2003.
  • [14] S. Ghurbal, and M. Ashour, “Economic competitiveness of nuclear desalination in Libya,” Desalination, vol. 158, pp. 201-204, Aug. 2003.
  • [15] D. T. Ingersoll, J. L. Binder, D. Conti, and M. E. Ricotti, "Nuclear desalination option for the international reactor innovative and secure (IRIS) design," presented at 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik, Croatia, May 16-20, 2004.
  • [16] A. K. Adak, and P. K. Tewari, “Coupling aspects of an MSF desalination plant and loss of electrical power generation of a nuclear power plant: case study,” Int. J. Nucl. Desalin., vol. 1, no. 3, pp. 373-381, Oct. 2004.
  • [17] A. K. Adak, V. K. Srivastava, and P. K. Tewari, “Thermal coupling system analysis of a nuclear desalination plant,” Int. J. Nucl. Desalin., vol. 4, no. 2, pp. 123-133, Sep. 2010.
  • [18] L. Tian, J. Guo, Y. Tang, and L. Cao, “A historical opportunity: economic competitiveness of seawater desalination project between nuclear and fossil fuel while the world oil price over $50 per boe-part A: MSF,” Desalination, vol. 183, pp. 317-325, Nov. 2005.
  • [19] N. Kahraman and Y. A. Cengel, “Exergy analysis of a MSF distillation plant,” Energ. Convers. Manage, vol. 46, no. 15-16, pp. 2625-2636, Sep. 2005.
  • [20] M. S. Saadawy, “Optimum thermal coupling system for co-generation nuclear desalination plants,” Int. J. Nucl. Desalin., vol. 2, no. 1, pp. 22-43, Apr. 2006.
  • [21] M. H. K. Manesh, and M. Amidpour, “Multi-objective thermoeconomic optimization of coupling MSF desalination with PWR nuclear power plant through evolutionary algorithms,” Desalination, vol. 249, no. 3, pp. 1332-1344, Dec. 2009.
  • [22] M. H. K. Manesh, M. Amidpour, and M. H. Hamedi, “Optimization of the coupling of pressurized water nuclear reactors and multistage flash desalination plant by evolutionary algorithms and thermoeconomic method,” Int. J. Energ. Res., vol. 33, no. 1, pp. 77-99, 2009.
  • [23] G. Alonso, S. Vargas, E. del Valle, and R. Ramirez, “Alternatives of seawater desalination using nuclear power,” Nucl. Eng. Des., vol. 245, pp. 39-48, Apr. 2012.
  • [24] X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, and R. Hino, “Study of an incrementally loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant,” Int. J. Energ. Res., vol. 37, no. 14, pp. 1811-1820, 2013.
  • [25] D. T. Ingersoll, Z. J. Houghton, R. Bromm, and C. Desportes, “NuScale small modular reactor for Co-generation of electricity and water,” Desalination, vol. 340, pp. 84-93, May 2014.
  • [26] E. Priego, G. Alonso, E. del Valle, and R. Ramirez, “Alternatives of steam extraction for desalination purposes using SMART reactor,” Desalination, vol. 413, pp. 199-216, Jul. 2017.
  • [27] S. U. D. Khan, S. U. D. Khan, S. Haider, A. El-Leathy, U. A. Rana, S. N. Danish and R. Ullah, “Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region,” Desalination, vol. 406, pp. 51-59, Mar. 2017.
  • [28] S. U. D. Khan, and S. U. D. Khan, “Karachi Nuclear Power Plant (KANUPP): As case study for techno-economic assessment of nuclear power coupled with water desalination,” Energy, vol. 127, pp. 372-380, May 2017.
  • [29] M. F. Polat, and I. Dincer, “Comparative evaluation of possible desalination options for Akkuyu Nuclear Power Plant,” in Exergetic, Energetic and Environmental Dimensions, I. Dincer, C. O. Colpan, and O. Kizilkan, Eds., Academic Press, 2018, pp. 583-596.
  • [30] E. Dewita, T. Ariyanto, H. Susiati, and M. Pancoko, “Conceptual design of Indonesia experimental power reactor coupled with desalination unit,” J. Phys. Conf. Ser., vol. 1198, no. 2, 2019, Art. no. 022056.
  • [31] K. Sadeghi, S. H. Ghazaie, E. Sokolova, E. Fedorovich, and A. Shirani, “Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems,” Desalination, vol. 493, Nov. 2020, Art. no. 114623.
  • [32] E. K. Redfoot, M. G. McKellar, and R. A. Borrelli, “Allocating heat and electricity in an Integrated Energy System coupled with a water purification system,” Nucl. Eng. Des., vol. 397, Oct. 2022, Art. no. 111902.
  • [33] A. Al Ghamdi, and I. Mustafa, “Exergy analysis of a MSF desalination plant in Yanbu, Saudi Arabia,” Desalination, vol. 399, pp. 148-158, Dec. 2016.
  • [34] B. Najafi, A. Shirazi, M. Aminyavari, F. Rinaldi, and R. A. Taylor, “Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system,” Desalination, vol. 334, no. 1, pp. 46-59, Feb. 2014.
  • [35] M. W. Chase, “NIST-JANAF thermochemical tables 2 volume set,” in Journal of physical and chemical reference data monographs. College Park, MD: American Institute of Physics, 1998.
  • [36] A. N. Bdour, N. Al-Sadeq, M. Gharaibeh, A. Mendoza-Sammet, M. D. Kennedy, and S. G. Salinas-Rodriguez, “Techno-economic analysis of selected PV-BWRO desalination plants in the context of the water-energy nexus for low-medium-income countries,” Energies, vol. 15, no. 22, Nov. 2022, Art. no. 8657.
  • [37] S. C. Painter, and M. N. Tsimplis, “Temperature and salinity trends in the upper waters of the Mediterranean Sea as determined from the MEDATLAS dataset,” Cont. Shelf Res., vol. 23, no. 16, pp. 1507-1522, Oct. 2003.
  • [38] A. Durmayaz, and O. S. Sogut, “Influence of cooling water temperature on the efficiency of a pressurized-water reactor nuclear-power plant,” Int. J. Energ. Res., vol. 30, no. 10, pp. 799-810, Apr. 2006.
Year 2024, , 1047 - 1066, 31.12.2024
https://doi.org/10.17798/bitlisfen.1500249

Abstract

References

  • [1] IAEA, “Introduction of Nuclear Desalination,” International Atomic Energy Agency, Vienna, Austria, Technical Reports Series no. 400, 2000.
  • [2] IAEA, “Status of Nuclear Desalination in IAEA Member States,” International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-1524, 2007.
  • [3] FAO and UN Water, “Progress on Level of Water Stress. Global status and acceleration needs for SDG Indicator 6.4.2,” United Nations, Rome, Italy, 2021.
  • [4] M. A. Rosen, “Nuclear Energy: Non-Electric Applications,” Eur. J. Sust. Dev. Res., vol. 5, no. 1, 2021, Art. no. em0147.
  • [5] EIA, “Electric Power Monthly,” EIA. Accessed: Feb. 5, 2024. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b
  • [6] A. Panagopoulos, and K. J. Haralambous, “Environmental impacts of desalination and brine treatment - Challenges and mitigation measures,” Mar. Pollut. Bull., 2020, vol. 161, Dec. 2020, Art. no. 111773.
  • [7] R. S. El-Emam, H. Ozcan, R. Bhattacharyya, and L. Awerbuch, “Nuclear desalination: A sustainable route to water security,” Desalination, vol. 542, Nov. 2022, Art. no. 116082.
  • [8] M. Ayaz, M. A. Namazi, M. Ammad ud Din, M. I. M. Ershath, A. Mansour, and E. M. Aggoune, “Sustainable seawater desalination: Current status, environmental implications and future expectations,” Desalination, vol. 540, Oct. 2022, Art. no. 116022.
  • [9] H. Nassrullah, S. F. Anisa, R. Hashaikeh, and N. Hilal, “Energy for desalination: A state-of-the-art review,” Desalination, vol. 491, Oct. 2020, Art. no. 114569.
  • [10] D. Curto, V. Franzitta, and A. Guercio, “A review of the water desalination technologies,” Appl. Sci., vol. 11, no. 2, Jan. 2021, Art. no. 670.
  • [11] I. G. Sánchez-Cervera, K. C. Kavvadias, and I. Khamis, “DE-TOP: A new IAEA tool for the thermodynamic evaluation of nuclear desalination,” Desalination, vol. 321, pp. 103-109, Jul. 2013.
  • [12] K. C. Kavvadias, and I. Khamis, “The IAEA DEEP desalination economic model: A critical review,” Desalination, vol. 257, pp. 150-157, Jul. 2010.
  • [13] R. S. Faibish, and H. Ettouney, “MSF nuclear desalination,” Desalination, vol. 157, pp. 277-287, Aug. 2003.
  • [14] S. Ghurbal, and M. Ashour, “Economic competitiveness of nuclear desalination in Libya,” Desalination, vol. 158, pp. 201-204, Aug. 2003.
  • [15] D. T. Ingersoll, J. L. Binder, D. Conti, and M. E. Ricotti, "Nuclear desalination option for the international reactor innovative and secure (IRIS) design," presented at 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik, Croatia, May 16-20, 2004.
  • [16] A. K. Adak, and P. K. Tewari, “Coupling aspects of an MSF desalination plant and loss of electrical power generation of a nuclear power plant: case study,” Int. J. Nucl. Desalin., vol. 1, no. 3, pp. 373-381, Oct. 2004.
  • [17] A. K. Adak, V. K. Srivastava, and P. K. Tewari, “Thermal coupling system analysis of a nuclear desalination plant,” Int. J. Nucl. Desalin., vol. 4, no. 2, pp. 123-133, Sep. 2010.
  • [18] L. Tian, J. Guo, Y. Tang, and L. Cao, “A historical opportunity: economic competitiveness of seawater desalination project between nuclear and fossil fuel while the world oil price over $50 per boe-part A: MSF,” Desalination, vol. 183, pp. 317-325, Nov. 2005.
  • [19] N. Kahraman and Y. A. Cengel, “Exergy analysis of a MSF distillation plant,” Energ. Convers. Manage, vol. 46, no. 15-16, pp. 2625-2636, Sep. 2005.
  • [20] M. S. Saadawy, “Optimum thermal coupling system for co-generation nuclear desalination plants,” Int. J. Nucl. Desalin., vol. 2, no. 1, pp. 22-43, Apr. 2006.
  • [21] M. H. K. Manesh, and M. Amidpour, “Multi-objective thermoeconomic optimization of coupling MSF desalination with PWR nuclear power plant through evolutionary algorithms,” Desalination, vol. 249, no. 3, pp. 1332-1344, Dec. 2009.
  • [22] M. H. K. Manesh, M. Amidpour, and M. H. Hamedi, “Optimization of the coupling of pressurized water nuclear reactors and multistage flash desalination plant by evolutionary algorithms and thermoeconomic method,” Int. J. Energ. Res., vol. 33, no. 1, pp. 77-99, 2009.
  • [23] G. Alonso, S. Vargas, E. del Valle, and R. Ramirez, “Alternatives of seawater desalination using nuclear power,” Nucl. Eng. Des., vol. 245, pp. 39-48, Apr. 2012.
  • [24] X. Yan, H. Noguchi, H. Sato, Y. Tachibana, K. Kunitomi, and R. Hino, “Study of an incrementally loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant,” Int. J. Energ. Res., vol. 37, no. 14, pp. 1811-1820, 2013.
  • [25] D. T. Ingersoll, Z. J. Houghton, R. Bromm, and C. Desportes, “NuScale small modular reactor for Co-generation of electricity and water,” Desalination, vol. 340, pp. 84-93, May 2014.
  • [26] E. Priego, G. Alonso, E. del Valle, and R. Ramirez, “Alternatives of steam extraction for desalination purposes using SMART reactor,” Desalination, vol. 413, pp. 199-216, Jul. 2017.
  • [27] S. U. D. Khan, S. U. D. Khan, S. Haider, A. El-Leathy, U. A. Rana, S. N. Danish and R. Ullah, “Development and techno-economic analysis of small modular nuclear reactor and desalination system across Middle East and North Africa region,” Desalination, vol. 406, pp. 51-59, Mar. 2017.
  • [28] S. U. D. Khan, and S. U. D. Khan, “Karachi Nuclear Power Plant (KANUPP): As case study for techno-economic assessment of nuclear power coupled with water desalination,” Energy, vol. 127, pp. 372-380, May 2017.
  • [29] M. F. Polat, and I. Dincer, “Comparative evaluation of possible desalination options for Akkuyu Nuclear Power Plant,” in Exergetic, Energetic and Environmental Dimensions, I. Dincer, C. O. Colpan, and O. Kizilkan, Eds., Academic Press, 2018, pp. 583-596.
  • [30] E. Dewita, T. Ariyanto, H. Susiati, and M. Pancoko, “Conceptual design of Indonesia experimental power reactor coupled with desalination unit,” J. Phys. Conf. Ser., vol. 1198, no. 2, 2019, Art. no. 022056.
  • [31] K. Sadeghi, S. H. Ghazaie, E. Sokolova, E. Fedorovich, and A. Shirani, “Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems,” Desalination, vol. 493, Nov. 2020, Art. no. 114623.
  • [32] E. K. Redfoot, M. G. McKellar, and R. A. Borrelli, “Allocating heat and electricity in an Integrated Energy System coupled with a water purification system,” Nucl. Eng. Des., vol. 397, Oct. 2022, Art. no. 111902.
  • [33] A. Al Ghamdi, and I. Mustafa, “Exergy analysis of a MSF desalination plant in Yanbu, Saudi Arabia,” Desalination, vol. 399, pp. 148-158, Dec. 2016.
  • [34] B. Najafi, A. Shirazi, M. Aminyavari, F. Rinaldi, and R. A. Taylor, “Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system,” Desalination, vol. 334, no. 1, pp. 46-59, Feb. 2014.
  • [35] M. W. Chase, “NIST-JANAF thermochemical tables 2 volume set,” in Journal of physical and chemical reference data monographs. College Park, MD: American Institute of Physics, 1998.
  • [36] A. N. Bdour, N. Al-Sadeq, M. Gharaibeh, A. Mendoza-Sammet, M. D. Kennedy, and S. G. Salinas-Rodriguez, “Techno-economic analysis of selected PV-BWRO desalination plants in the context of the water-energy nexus for low-medium-income countries,” Energies, vol. 15, no. 22, Nov. 2022, Art. no. 8657.
  • [37] S. C. Painter, and M. N. Tsimplis, “Temperature and salinity trends in the upper waters of the Mediterranean Sea as determined from the MEDATLAS dataset,” Cont. Shelf Res., vol. 23, no. 16, pp. 1507-1522, Oct. 2003.
  • [38] A. Durmayaz, and O. S. Sogut, “Influence of cooling water temperature on the efficiency of a pressurized-water reactor nuclear-power plant,” Int. J. Energ. Res., vol. 30, no. 10, pp. 799-810, Apr. 2006.
There are 38 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Araştırma Makalesi
Authors

Erdem Akyürek 0000-0002-8856-2387

Tayfun Tanbay 0000-0002-0428-3197

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date June 12, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024

Cite

IEEE E. Akyürek and T. Tanbay, “Comprehensive Energy and Exergy Analysis of a Pressurized Water Reactor Driven Multi-Stage Flash Desalination Plant”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 1047–1066, 2024, doi: 10.17798/bitlisfen.1500249.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS