Research Article
BibTex RIS Cite

Determining the Suction Capacity of Compacted Clays with Fuzzy-Set Theory

Year 2024, , 851 - 859, 26.09.2024
https://doi.org/10.17798/bitlisfen.1506446

Abstract

Water suction capacity is an important parameter affecting the swelling properties and volumetric change of soil. Determination of the water suction capacity is made by the experiments which are needed long time in laboratory. However, this has random errors due to the heterogeneous and anisotropic structure of soil sample together with the error caused by the operator made the experiment. Such an estimation problem, included the errors, may be easily solved with the fuzzy-set theory. In this study, the suction capacity of compacted clayey soils is predicted with the fuzzy-set theory. For this reason, the engineering properties of clayey soil (plasticity index, dry density, initial water content and suction capacity) are partitioned into fuzzy subsets, and fuzzy rules are formed. Later, a computer program in the Fortran language is written to estimate the suction capacity of compacted clayey soil from these properties. It is shown that there is a good similarity between the results of the tests and proposed fuzzy logic model.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi

Thanks

Yazarlar SDU BAP a teşekkür ederler

References

  • [1] D. G. Fredlund and H. Rahardjo, Soil Mechanics For Unsaturated Soils. New York, USA: John Wiley & Sons. Inc., 1993.
  • [2] S. S. Agus, E. C. Leong, and H. Rahardjo, “Soil-water characteristic curves of Singapore residual soils,” Geotech. Geol. Eng., vol. 19, pp. 285-309, 2001.
  • [3] S. Uzundurukan, S. N. Keskin, H. Yıldırım, T. S. Göksan, and Ö. Çimen, “Suction and swell characteristics of compacted clayey soils,” Arabian J. Sci. Eng., vol. 39, pp. 747-752, 2013.
  • [4] J. Krahn and D. G. Fredlund, “On total matric and osmotic suction,” J. Soil Sci., vol. 114, no. 5, pp. 339-348, 1972.
  • [5] J. A. Jimenaz-Salas, “Foundation and pavements on unsaturated soils - Part two: Expansive clays,” presented at the Proc. the first international conference on unsaturated soils, / Unsat’95 / Paris / France / 6-8 September 1995, 3, Presses Del L’ecole Nationale Des Ponts Et Chaussees, pp. 1441-1464, 1995.
  • [6] N. Khalili and M. H. Khabbaz, “A unique relationship for χ the determination of the shear strength of unsaturated soils,” Geotech., vol. 48, no. 5, pp. 681-687, 1998.
  • [7] J. F. T. Juca and V. Escario, “Variation of the modulus of determination of unsaturated soils with suction,” presented at the Proc. the Tenth European Conference on Soil Mechanics and Foundation Engineering, Florence, pp. 121-124, 1991.
  • [8] S. K. Vanapalli, D. G. Fredlund, D. E. Pufahl, and A. W. Clifton, “Model for the prediction of shear strength with respect to soil suction,” Can. Geotech. J., vol. 33, pp. 379-392, 1996.
  • [9] D. W. Rassam and D. J. Williams, “Bearing capacity of desiccated tailings”, J. Geotech. Geoenv. Eng., vol. 125, no. 7, pp. 600-609, 1999.
  • [10] J. D. Nelson and D. J. Miller, Expansive Soils Problem and Practice in Foundation and Pavement Engineering, New York, USA: John Wiley & Sons, 1992.
  • [11] J. M. Fleureau, S. K. Saoud, R. Soemitro, and S. Taibi, “Behaviour of clayey soils on drying- wetting paths,” Can. Geotech. J., vol. 30, pp. 287-296, 1993.
  • [12] L. N. Reddi and R. Poduri, “Use of liquid limit state to generalize water retention properties of fine- grained soils,” Geotech., vol. 47, no. 5, pp. 1043-1049, 1997.
  • [13] S. M. Rao and K. Revanasidappa, “Role of matric suction in collapse of compacted clay soil,” J. Geotech. Geoenv. Eng., vol. 126, no. 1, pp. 85-90, 2000.
  • [14] S. K. Vanapalli, D. G. Fredlund, and D. E. Pufahl, “The influence of soil structure and stress history on the soil-water characteristics of a compacted till,” Geotech., vol. 49, no. 2, pp. 143-159, 1999.
  • [15] E. Romero, A. Gens, and A. Lloret, “Temperature effects on the hydraulic behaviour of an unsaturated clay,” Geotech. Geol. Eng., vol. 19, pp. 311-332, 2001.
  • [16] A. Casagrande, “Role of calculated risk in earthwork and foundation engineering,” J. Soil Mech. Found. Div., ASCE, vol. 91, no. 4, pp. 1-40, 1965.
  • [17] L. A. Zadeh, “Fuzzy Sets,” Inform. Cont., vol. 8, pp. 338-353, 1965.
  • [18] C. H. Juang, J. L. Wey, and D. J. Elton, “Model for capacity of single piles in sand using fuzzy sets,” J. Geotech. Eng., vol. 17, no. 12, pp. 1920-1931, 1991.
  • [19] C. H. Juang, D. H. Lee, and C. Sheu, “Mapping slope failure potential using fuzzy sets,” J. Geotech. Eng., vol. 118, no. 3, pp. 475–494, 1992.
  • [20] C. H. Juang, X. H. Huang, R. D. Holtz, and J. W. Chen, “Determining relative density of sands from CPT using fuzzy sets,” J. Geotech. Eng., vol. 122, no. 1, pp. 1-6, 1996.
  • [21] Z. Zhang and M. T. Tümay, “Statistical to fuzzy aprproach toward CPT soil classification,” J. Geotech. Geoenv. Eng., vol. 125, no. 3, pp. 179-186, 1999.
  • [22] N. O. Nawari and R. Liang, “Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters,” Can. Geotech. J., vol. 37, pp. 1131-1140, 2000.
  • [23] A. Sujatha, L. Govindaraju, N. Shivakumar, and V. Devaraj, “Fuzzy Expert System for Engineering Classification of Soils,” Geotechnical Characterization and Modelling Conf., pp. 85-101, 2020.
  • [24] K. C. Onyelowe, F. F. Mojtahedi, A. M. Ebid, A. Rezaei, K. J. Osinubi, A. O. Eberemu, B. Salahudeen, E. W. Gadzama, D. Rezazadeh, H. Jahangir, P. Yohanna, M. E. Onyia, F. E. Jalal, M. Iqbal, C. Ikpa, I. I. Obianyo, and Z. U. Rehman, “Selected AI optimization techniques and applications in geotechnical engineering,” Cogent Eng., vol. 10, 2153419, 2023.
  • [25] M. Rahal, S. Soleiman, and B. Hussein, “Comprehensive Methodology for Landslide Risk Assessment Using Fuzzy Logic Systems: A Step-by-Step Approach,” presented at the Proc. the 9th World Congress on Civil, Structural, and Environmental Engineering (CSEE 2024), London, United Kingdom, Paper No.152, April 14-16, 2024.
  • [26] A. Flamaki, A. H. Shafiee, and M. Esfandiyari, “Feasibility study of fuzzy method in slope stability analysis of earth dams with respect to the uncertainty of geotechnical parameters,” J. Hydrau. Struct., vol. 10, no. 3, pp.34-50, 2024.
  • [27] V. C. Madanda, F. Sengani, and F. Mulenga, “Applications of fuzzy theory‑based approaches in tunnelling geomechanics: a state‑of‑the‑art review,” Mining, Metal. & Explor., vol. 40, pp.819–837, 2023.
  • [28] Y. Mao, L. Chen, Y. A. Nanehkaran, M. Azarafza, and R. Derakhshani, “Fuzzy-based intelligent model for rapid rock slope stability analysis using Qslope,” Water, vol. 15, 2949, 2023.
  • [29] E. A. Çubukçu, E. Uray, and V. Demir, “Fuzzy logic based prediction of retaining wall stability,” Chall. J. Struct. Mech., vol. 9, no. 4, pp. 145–152, 2023.
  • [30] V. Phani Kumar and C. Sudha Rani, “Prediction of safe bearing capacity for settlement criteria using neuro-fuzzy inference system for Clayey soils”, Adv. Sustain. Mater. Infras., IOP Conf. Series: Earth Envir. Sci., 1086, 012023, 2022.
  • [31] A. Sujatha, L. Govindaraju, N. Shivakumar, and V. Devaraj, “Fuzzy Knowledge Based System for Suitability of Soils in Airfield Applications,” Civ. Eng. J., vol. 7, no. 1, 2021.
  • [32] I. Zorluer and U. S. Cavus, “Fuzzy logic assessment of engineering properties of granular soil with wastes for environment protection and road base use,” Case Stud. Const. Matrl., vol. 15, e00774, 2021.
  • [33] E. Yıldırım, E. Avcı, and N. A. Tanbay, “Prediction of unconfined compressive strength of microfine cement injected sands using Fuzzy Logic method,” Academic Platf. J. Eng. Smrt. Sys., vol. 11, no. 2, pp.87-94, 2023.
  • [34] Ö. Çimen, “Determination of swelling and suction properties of clay soils with fuzzy logic,” PhD dissertation, Dept. Civil Eng., Süleyman Demirel Univ., Isparta, Türkiye, 2002.
  • [35] S. H. Lee, R. J. Howlett, C. Crua, and S. D. Walters, “Fuzzy logic and neuro-fuzzy modeling of diesel spray penetration: A comparative study,” J. Intelligent Fuzzy Syst., vol. 18, pp. 43-56, 2007.
  • [36] S. Fons, G. Achari, and T. Ross, “A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park,” J. Intelligent Fuzzy Syst., vol. 15, no. 2, pp. 43-56, 2004.
  • [37] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, N.J., USA: Prentice Hall, 1992.
  • [38] Z. Sen, Bulanik Mantık ve Modelleme İlkeleri, İstanbul, Türkiye: Publications of Water Foundation, (in Turkish), 2001.
  • [39] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller- part 1,” IEEE Trans. Sys. Man Cyber., vol. 20, no. 2, pp. 404-418, 1990.
  • [40] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in Engineering, New York, USA: John Wiley & Sons, Inc., 1997.
  • [41] E. H. Mamdani, “Applications of Fuzzy set theory to control systems: A survey,” in Fuzzy Automata and Decision Processes, M.M. Gupta, G.N. Saridis and B.R. Gaines, Eds., Amsterdam, North-Holland, 1977, pp. 1-13.
  • [42] F. H. Chen, Foundations on Expansive Soil, New York, USA: Elsevier, 1975.
  • [43] J. K. Mitchell, Fundamentals of Soil Behavior, New York, USA: John Wiley & Sons, Inc., 1976.
  • [44] D. R. Snethen, “Evaluation on expedient methods for ıdentification on classification of potentially expansive soils”, presented at the Proc. 5th Int. Conf. on expansive soils, Adelaide, 198
Year 2024, , 851 - 859, 26.09.2024
https://doi.org/10.17798/bitlisfen.1506446

Abstract

References

  • [1] D. G. Fredlund and H. Rahardjo, Soil Mechanics For Unsaturated Soils. New York, USA: John Wiley & Sons. Inc., 1993.
  • [2] S. S. Agus, E. C. Leong, and H. Rahardjo, “Soil-water characteristic curves of Singapore residual soils,” Geotech. Geol. Eng., vol. 19, pp. 285-309, 2001.
  • [3] S. Uzundurukan, S. N. Keskin, H. Yıldırım, T. S. Göksan, and Ö. Çimen, “Suction and swell characteristics of compacted clayey soils,” Arabian J. Sci. Eng., vol. 39, pp. 747-752, 2013.
  • [4] J. Krahn and D. G. Fredlund, “On total matric and osmotic suction,” J. Soil Sci., vol. 114, no. 5, pp. 339-348, 1972.
  • [5] J. A. Jimenaz-Salas, “Foundation and pavements on unsaturated soils - Part two: Expansive clays,” presented at the Proc. the first international conference on unsaturated soils, / Unsat’95 / Paris / France / 6-8 September 1995, 3, Presses Del L’ecole Nationale Des Ponts Et Chaussees, pp. 1441-1464, 1995.
  • [6] N. Khalili and M. H. Khabbaz, “A unique relationship for χ the determination of the shear strength of unsaturated soils,” Geotech., vol. 48, no. 5, pp. 681-687, 1998.
  • [7] J. F. T. Juca and V. Escario, “Variation of the modulus of determination of unsaturated soils with suction,” presented at the Proc. the Tenth European Conference on Soil Mechanics and Foundation Engineering, Florence, pp. 121-124, 1991.
  • [8] S. K. Vanapalli, D. G. Fredlund, D. E. Pufahl, and A. W. Clifton, “Model for the prediction of shear strength with respect to soil suction,” Can. Geotech. J., vol. 33, pp. 379-392, 1996.
  • [9] D. W. Rassam and D. J. Williams, “Bearing capacity of desiccated tailings”, J. Geotech. Geoenv. Eng., vol. 125, no. 7, pp. 600-609, 1999.
  • [10] J. D. Nelson and D. J. Miller, Expansive Soils Problem and Practice in Foundation and Pavement Engineering, New York, USA: John Wiley & Sons, 1992.
  • [11] J. M. Fleureau, S. K. Saoud, R. Soemitro, and S. Taibi, “Behaviour of clayey soils on drying- wetting paths,” Can. Geotech. J., vol. 30, pp. 287-296, 1993.
  • [12] L. N. Reddi and R. Poduri, “Use of liquid limit state to generalize water retention properties of fine- grained soils,” Geotech., vol. 47, no. 5, pp. 1043-1049, 1997.
  • [13] S. M. Rao and K. Revanasidappa, “Role of matric suction in collapse of compacted clay soil,” J. Geotech. Geoenv. Eng., vol. 126, no. 1, pp. 85-90, 2000.
  • [14] S. K. Vanapalli, D. G. Fredlund, and D. E. Pufahl, “The influence of soil structure and stress history on the soil-water characteristics of a compacted till,” Geotech., vol. 49, no. 2, pp. 143-159, 1999.
  • [15] E. Romero, A. Gens, and A. Lloret, “Temperature effects on the hydraulic behaviour of an unsaturated clay,” Geotech. Geol. Eng., vol. 19, pp. 311-332, 2001.
  • [16] A. Casagrande, “Role of calculated risk in earthwork and foundation engineering,” J. Soil Mech. Found. Div., ASCE, vol. 91, no. 4, pp. 1-40, 1965.
  • [17] L. A. Zadeh, “Fuzzy Sets,” Inform. Cont., vol. 8, pp. 338-353, 1965.
  • [18] C. H. Juang, J. L. Wey, and D. J. Elton, “Model for capacity of single piles in sand using fuzzy sets,” J. Geotech. Eng., vol. 17, no. 12, pp. 1920-1931, 1991.
  • [19] C. H. Juang, D. H. Lee, and C. Sheu, “Mapping slope failure potential using fuzzy sets,” J. Geotech. Eng., vol. 118, no. 3, pp. 475–494, 1992.
  • [20] C. H. Juang, X. H. Huang, R. D. Holtz, and J. W. Chen, “Determining relative density of sands from CPT using fuzzy sets,” J. Geotech. Eng., vol. 122, no. 1, pp. 1-6, 1996.
  • [21] Z. Zhang and M. T. Tümay, “Statistical to fuzzy aprproach toward CPT soil classification,” J. Geotech. Geoenv. Eng., vol. 125, no. 3, pp. 179-186, 1999.
  • [22] N. O. Nawari and R. Liang, “Fuzzy-based approach for determination of characteristic values of measured geotechnical parameters,” Can. Geotech. J., vol. 37, pp. 1131-1140, 2000.
  • [23] A. Sujatha, L. Govindaraju, N. Shivakumar, and V. Devaraj, “Fuzzy Expert System for Engineering Classification of Soils,” Geotechnical Characterization and Modelling Conf., pp. 85-101, 2020.
  • [24] K. C. Onyelowe, F. F. Mojtahedi, A. M. Ebid, A. Rezaei, K. J. Osinubi, A. O. Eberemu, B. Salahudeen, E. W. Gadzama, D. Rezazadeh, H. Jahangir, P. Yohanna, M. E. Onyia, F. E. Jalal, M. Iqbal, C. Ikpa, I. I. Obianyo, and Z. U. Rehman, “Selected AI optimization techniques and applications in geotechnical engineering,” Cogent Eng., vol. 10, 2153419, 2023.
  • [25] M. Rahal, S. Soleiman, and B. Hussein, “Comprehensive Methodology for Landslide Risk Assessment Using Fuzzy Logic Systems: A Step-by-Step Approach,” presented at the Proc. the 9th World Congress on Civil, Structural, and Environmental Engineering (CSEE 2024), London, United Kingdom, Paper No.152, April 14-16, 2024.
  • [26] A. Flamaki, A. H. Shafiee, and M. Esfandiyari, “Feasibility study of fuzzy method in slope stability analysis of earth dams with respect to the uncertainty of geotechnical parameters,” J. Hydrau. Struct., vol. 10, no. 3, pp.34-50, 2024.
  • [27] V. C. Madanda, F. Sengani, and F. Mulenga, “Applications of fuzzy theory‑based approaches in tunnelling geomechanics: a state‑of‑the‑art review,” Mining, Metal. & Explor., vol. 40, pp.819–837, 2023.
  • [28] Y. Mao, L. Chen, Y. A. Nanehkaran, M. Azarafza, and R. Derakhshani, “Fuzzy-based intelligent model for rapid rock slope stability analysis using Qslope,” Water, vol. 15, 2949, 2023.
  • [29] E. A. Çubukçu, E. Uray, and V. Demir, “Fuzzy logic based prediction of retaining wall stability,” Chall. J. Struct. Mech., vol. 9, no. 4, pp. 145–152, 2023.
  • [30] V. Phani Kumar and C. Sudha Rani, “Prediction of safe bearing capacity for settlement criteria using neuro-fuzzy inference system for Clayey soils”, Adv. Sustain. Mater. Infras., IOP Conf. Series: Earth Envir. Sci., 1086, 012023, 2022.
  • [31] A. Sujatha, L. Govindaraju, N. Shivakumar, and V. Devaraj, “Fuzzy Knowledge Based System for Suitability of Soils in Airfield Applications,” Civ. Eng. J., vol. 7, no. 1, 2021.
  • [32] I. Zorluer and U. S. Cavus, “Fuzzy logic assessment of engineering properties of granular soil with wastes for environment protection and road base use,” Case Stud. Const. Matrl., vol. 15, e00774, 2021.
  • [33] E. Yıldırım, E. Avcı, and N. A. Tanbay, “Prediction of unconfined compressive strength of microfine cement injected sands using Fuzzy Logic method,” Academic Platf. J. Eng. Smrt. Sys., vol. 11, no. 2, pp.87-94, 2023.
  • [34] Ö. Çimen, “Determination of swelling and suction properties of clay soils with fuzzy logic,” PhD dissertation, Dept. Civil Eng., Süleyman Demirel Univ., Isparta, Türkiye, 2002.
  • [35] S. H. Lee, R. J. Howlett, C. Crua, and S. D. Walters, “Fuzzy logic and neuro-fuzzy modeling of diesel spray penetration: A comparative study,” J. Intelligent Fuzzy Syst., vol. 18, pp. 43-56, 2007.
  • [36] S. Fons, G. Achari, and T. Ross, “A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park,” J. Intelligent Fuzzy Syst., vol. 15, no. 2, pp. 43-56, 2004.
  • [37] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, N.J., USA: Prentice Hall, 1992.
  • [38] Z. Sen, Bulanik Mantık ve Modelleme İlkeleri, İstanbul, Türkiye: Publications of Water Foundation, (in Turkish), 2001.
  • [39] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller- part 1,” IEEE Trans. Sys. Man Cyber., vol. 20, no. 2, pp. 404-418, 1990.
  • [40] L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in Engineering, New York, USA: John Wiley & Sons, Inc., 1997.
  • [41] E. H. Mamdani, “Applications of Fuzzy set theory to control systems: A survey,” in Fuzzy Automata and Decision Processes, M.M. Gupta, G.N. Saridis and B.R. Gaines, Eds., Amsterdam, North-Holland, 1977, pp. 1-13.
  • [42] F. H. Chen, Foundations on Expansive Soil, New York, USA: Elsevier, 1975.
  • [43] J. K. Mitchell, Fundamentals of Soil Behavior, New York, USA: John Wiley & Sons, Inc., 1976.
  • [44] D. R. Snethen, “Evaluation on expedient methods for ıdentification on classification of potentially expansive soils”, presented at the Proc. 5th Int. Conf. on expansive soils, Adelaide, 198
There are 44 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Araştırma Makalesi
Authors

Ömür Çimen 0000-0002-6138-6029

Nilay Keskin 0000-0002-0367-943X

Early Pub Date September 20, 2024
Publication Date September 26, 2024
Submission Date June 28, 2024
Acceptance Date August 15, 2024
Published in Issue Year 2024

Cite

IEEE Ö. Çimen and N. Keskin, “Determining the Suction Capacity of Compacted Clays with Fuzzy-Set Theory”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 3, pp. 851–859, 2024, doi: 10.17798/bitlisfen.1506446.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS