Research Article
BibTex RIS Cite

Effect of Rubber and Steel Fibers Obtained from Waste Tires on Mechanical and Physical Properties of Concrete: An Experimental Study

Year 2025, Volume: 14 Issue: 3, 1866 - 1890, 30.09.2025
https://doi.org/10.17798/bitlisfen.1736282

Abstract

This study investigates the incorporation of rubber particles and steel fibers, derived from end-of-life vehicle tires, into concrete as partial replacements for fine aggregates, with the goal of enhancing sustainability in construction materials. Twelve concrete mixtures containing varying proportions of rubber (5%, 10%, and 15%) and steel fibers (0.4% and 0.8%) were prepared. The mechanical and physical properties of these mixtures were evaluated through compressive and flexural strength tests, ultrasonic pulse velocity measurements, water absorption analyses, and scanning electron microscopy. The results showed that while rubber reduced compressive strength and increased porosity, it improved flexibility at low contents. In contrast, steel fibers increased density and flexural strength, and counteracted the negative effects of rubber by reducing internal voids and inhibiting crack propagation. The combined use of rubber and steel fibers yielded a complementary improvement in both mechanical performance and durability. These findings confirm the technical feasibility of incorporating waste tire materials into concrete and underscore their relevance in sustainable construction practices.

Ethical Statement

The study is complied with research and publication ethics.

References

  • Karaşin and M. Doğruyol, “An experimental study on strength and durability for utilization of fly ash in concrete mix,” Adv. Mater. Sci. Eng., vol. 2014, 2014, doi: 10.1155/2014/417514.
  • Karasin, M. Hadzima-Nyarko, E. Işık, M. Doğruyol, I. B. Karasin, and S. Czarnecki, “The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks,” Materials, vol. 15, 2022, doi: 10.3390/ma15041581.
  • F. Z. Çiçek, R. Pekgökgöz, S. B. Kazanasmaz, A. Sarıışık, and F. Avcil, “Effect of fly ash and metakaolin substituted forms on structural properties in light mortar with pumice aggregate,” Bitlis Eren Univ. J. Sci., vol. 13, pp. 709–722, 2024, doi: 10.17798/bitlisfen.1479126.
  • M. Doğruyol and M. Durmaz, “The effect of pistachio vera shell ash (PSA) on concrete performance,” Bitlis Eren Univ. J. Sci., 2025, doi: 10.17798/bitlisfen.1602440.
  • E. Güneyisi, M. Gesoğlu, Z. Algın, and H. Yazıcı, “Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates,” Constr. Build. Mater., vol. 64, pp. 172–183, 2014, doi: 10.1016/j.conbuildmat.2014.04.090.
  • M. Doğruyol, E. Ayhan, and A. Karaşin, “Effect of waste steel fiber use on concrete behavior at high temperature,” Case Stud. Constr. Mater., vol. 20, 2024, doi: 10.1016/j.cscm.2024.e03051.
  • F. Liu, G. Chen, L. Li, and Y. Guo, “Study of impact performance of rubber reinforced concrete,” Constr. Build. Mater., vol. 36, pp. 604–616, 2012, doi: 10.1016/j.conbuildmat.2012.06.014.
  • E. Ayhan, M. Doğruyol, F. Kıpçak, and A. Karaşin, “Atık taşıt lastik çelik lifinin beton davranışına etkisi,” DUJE, 2024, doi: 10.24012/dumf.1468070.
  • Siddika, Md. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711–731, 2019, doi: 10.1016/j.conbuildmat.2019.07.108.
  • N. N. Gerges, C. A. Issa, and S. A. Fawaz, “Rubber concrete: Mechanical and dynamical properties,” Case Stud. Constr. Mater., vol. 9, p. e00184, 2018, doi: 10.1016/j.cscm.2018.e00184.
  • O. Atahan and A. Ö. Yücel, “Crumb rubber in concrete: Static and dynamic evaluation,” Constr. Build. Mater., vol. 36, pp. 617–622, 2012, doi: 10.1016/j.conbuildmat.2012.04.068.
  • F. Köksal, A. Ilki, and M. A. Tasdemir, “Optimum mix design of steel-fibre-reinforced concrete plates,” Arab J. Sci. Eng., vol. 38, pp. 2971–2983, 2013, doi: 10.1007/s13369-012-0468-y.
  • M. T. Lakhiar et al., “Thermal and mechanical properties of concrete incorporating silica fume and waste rubber powder,” Polymers (Basel), vol. 14, no. 4858, 2022, doi: 10.3390/polym14224858.
  • C. Bu, D. Zhu, L. Liu, X. Lu, Y. Sun, L. Yu, Y. OuYang, X. Cao, F. Wang, “Research progress on rubber concrete properties: A review,” J. Rubber Res., vol. 25, pp. 105–125, 2022, doi: 10.1007/s42464-022-00161-8.
  • M. Yalçin, C. Taşdemir, and M. A. Taşdemir, “Çelik lif donatılı betonların performans sınıflarının belirlenmesi,” İTÜ Dergisi, vol. 8, no. 6, 2011.
  • F. Bayramov, A. Ilki, C. Taşdemir, M. A. Taşdemir, and M. Yerlikaya, “An optimum design for steel fiber reinforced concretes under cyclic loading,” in Proc. 5th Int. Conf. Fracture Mech. Concrete Struct., 2004, pp. 1121–1128.
  • F. Pelisser, N. Zavarise, T. A. Longo, and A. M. Bernardin, “Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition,” J. Clean. Prod., vol. 19, pp. 757–763, 2011, doi: 10.1016/j.jclepro.2010.11.014.
  • S. Thomas, R. C. Gupta, P. Kalla, and L. Cseteneyi, “Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates,” Constr. Build. Mater., vol. 59, pp. 204–212, 2014, doi: 10.1016/j.conbuildmat.2014.01.074.
  • S. Elbialy, W. Ibrahim, S. Mahmoud, N. M. Ayash, and H. Mamdouh, “Mechanical characteristics and structural performance of rubberized concrete: Experimental and analytical analysis,” Case Stud. Constr. Mater., vol. 21, p. e03727, 2024, doi: 10.1016/j.cscm.2024.e03727.
  • O. Sengul, “Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires,” Constr. Build. Mater., vol. 122, pp. 649–658, 2016, doi: 10.1016/j.conbuildmat.2016.06.113.
  • F. Köksal, K. S. Rao, Z. Babayev, and M. Kaya, “Effect of steel fibres on flexural toughness of concrete and RC beams,” Arab J. Sci. Eng., vol. 47, pp. 4375–4384, 2022, doi: 10.1007/s13369-021-06113-5.
  • H. T. Wang and L. C. Wang, “Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete,” Constr. Build. Mater., vol. 38, pp. 1146–1151, 2013, doi: 10.1016/j.conbuildmat.2012.09.016.
  • W. Abbass, M. I. Khan, and S. Mourad, “Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete,” Constr. Build. Mater., vol. 168, pp. 556–569, 2018, doi: 10.1016/j.conbuildmat.2018.02.164.
  • R. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. T. Leung, “Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete,” Build. Environ., vol. 37, pp. 1361–1367, 2002, doi: 10.1016/S0360-1323(01)00109-3.
  • “Lastik geri dönüşüm tesisi,” Yıldız Endüstri, Accessed: Jun. 20, 2024. [Online]. Available: https://www.yildizendustri.com.tr/?page_id=7671
  • “Yakupoğulları geri dönüşüm,” Accessed: Apr. 10, 2023. [Online]. Available: https://yakupogullari.com.tr/
  • B. S. Mohammed, K. M. Anwar Hossain, J. T. Eng Swee, G. Wong, and M. Abdullahi, “Properties of crumb rubber hollow concrete block,” J. Clean. Prod., vol. 23, pp. 57–67, 2012, doi: 10.1016/j.jclepro.2011.10.035.
  • A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, and M. Quéneudec, “Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling,” Constr. Build. Mater., vol. 22, pp. 573–579, 2008, doi: 10.1016/j.conbuildmat.2006.11.011.
  • Marie, “Zones of weakness of rubberized concrete behavior using the UPV,” J. Clean. Prod., vol. 116, pp. 217–222, 2016, doi: 10.1016/j.jclepro.2015.12.096.
  • TS EN 206+A2, Beton - Özellik, performans, imalat ve uygunluk, 2021.
  • TS EN 12390-5, Testing hardened concrete – Part 5: Flexural strength of specimens of hardened concrete, 2010.
  • ASTM C78-09, Standard test method for flexural strength of concrete (using simple beam with third-point loading), 2010.
  • EN 12504-4, Testing concrete – Part 4: Determination of ultrasonic pulse velocity, British Standards Institution, 2004.
  • ASTM C597-02, Pulse velocity through concrete, ASTM International, West Conshohocken, PA, USA, 2003.
  • TS 3624, Sertleşmiş betonda özgül ağırlık, su emme ve boşluk oranı tayin metodu, n.d.
  • Y. T. Erdoğan, Materials of Construction. Ankara: M.E.T.U. Press, 2002.
  • N. Ganesan, R. Abraham, and S. D. Raj, “Durability characteristics of steel fibre reinforced geopolymer concrete,” Constr. Build. Mater., vol. 93, pp. 471–476, 2015, doi: 10.1016/j.conbuildmat.2015.06.014.
  • M. A. Faris et al., “Comparison of hook and straight steel fibers addition on Malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties,” Materials, vol. 14, no. 1310, 2021, doi: 10.3390/ma14051310.
  • R. Khaloo, M. Dehestani, and P. Rahmatabadi, “Mechanical properties of concrete containing a high volume of tire–rubber particles,” Waste Manag., vol. 28, pp. 2472–2482, 2008, doi: 10.1016/j.wasman.2008.01.015.
  • C. Harshavardhan and S. BalaMurugan, “Study on high-density concrete reinforced with steel fiber at elevated temperatures,” ARPN J. Eng. Appl. Sci., vol. 11, pp. 11415–11420, 2016.
  • IS 13311, Non-destructive testing of concrete methods of test, Part 1, Bureau of Indian Standards, Manak Bhavan, New Delhi, India, 1992.
  • V. M. Malhotra, Testing hardened concrete: Nondestructive methods. Ottawa, Canada: CRC Press, 1976.
  • Afshinnia and A. Poursaee, “The potential of ground clay brick to mitigate alkali–silica reaction in mortar prepared with highly reactive aggregate,” Constr. Build. Mater., vol. 95, pp. 164–170, 2015, doi: 10.1016/j.conbuildmat.2015.07.155.
  • D. A. S. Rambo, F. de A. Silva, and R. D. T. Filho, “Effect of steel fiber hybridization on the fracture behavior of self-consolidating concretes,” Cem. Concr. Compos., vol. 54, pp. 100–109, 2014, doi: 10.1016/j.cemconcomp.2014.02.004.
  • A. T. Noaman, B. H. Abu Bakar, and H. M. Akil, “Investigation on the mechanical properties of rubberized steel fiber concrete,” Eng. Struct. Technol., vol. 9, no. 2, pp. 79–92, 2017, doi: 10.3846/2029882x.2017.1309301.
  • M. Doğruyol, “Characterisation of acrylic copolymer treated concretes and concretes of reinforced concrete buildings collapsed in the 6 February 2023 Mw = 7.8 Kahramanmaraş (Türkiye) earthquake,” Eng. Fail. Anal., vol. 161, 2024, doi: 10.1016/j.engfailanal.2024.108249.
  • M. Doğruyol, A. Gönül, and M. Başboğa, “Comparative analysis of cement-based and historic gypsum-based mortars for historical restoration: Implications on mechanical and thermal compatibility,” J. Build. Eng., vol. 109, p. 112982, 2025, doi: 10.1016/j.jobe.2025.112982.
  • N. Segre and I. Joekes, “Use of tire rubber particles as addition to cement paste,” Cem. Concr. Res., vol. 30, no. 9, pp. 1421–1425, 2000, doi: 10.1016/S0008-8846(00)00373-2.
  • Liu, Q. Guan, L. Zhang, C. Liu, X. Chen, and X. Cai, “Evaluation of the compressive-strength reducing behavior of concrete containing rubber aggregate,” Cleaner Mater., vol. 4, p. 100057, 2022, doi: 10.1016/j.clema.2022.100057.
  • Y.-F. Wu, S. M. S. Kazmi, M. J. Munir, Y. Zhou, and F. Xing, “Effect of compression casting method on the compressive strength, elastic modulus and microstructure of rubber concrete,” J. Clean. Prod., vol. 264, p. 121746, 2020, doi: 10.1016/j.jclepro.2020.121746.
  • Y. Li and Y. Li, “Experimental study on performance of rubber particle and steel fiber composite toughening concrete,” Constr. Build. Mater., vol. 146, pp. 267–275, 2017, doi: 10.1016/j.conbuildmat.2017.04.100.
  • M. V. Mohod, “Performance of steel fiber reinforced concrete,” Int. J. Eng. Sci., vol. 1, no. 12, pp. 1–4, 2012.
  • W. Abbass, M. I. Khan, and S. Mourad, “Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete,” Constr. Build. Mater., vol. 168, pp. 556–569, 2018, doi: 10.1016/j.conbuildmat.2018.02.164.
  • C. G. Papakonstantinou and M. J. Tobolski, “Use of waste tire steel beads in Portland cement concrete,” Cem. Concr. Res., vol. 36, no. 9, pp. 1686–1691, 2006, doi: 10.1016/j.cemconres.2006.05.015.
  • K. M. Liew and A. Akbar, “The recent progress of recycled steel fiber reinforced concrete,” Constr. Build. Mater., vol. 232, p. 117232, 2020, doi: 10.1016/j.conbuildmat.2019.117232.
  • S.-C. Lee, J.-H. Oh, and J.-Y. Cho, “Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers,” Materials, vol. 8, no. 4, pp. 1442–1458, 2015, doi: 10.3390/ma8041442.
  • A. Alsaif, L. Koutas, S. A. Bernal, M. Guadagnini, and K. Pilakoutas, “Mechanical performance of steel fibre reinforced rubberised concrete for flexible concrete pavements,” Constr. Build. Mater., vol. 172, pp. 533–543, 2018, doi: 10.1016/j.conbuildmat.2018.04.010.
  • M. Akgül, O. Doğan, and S. Etli, “Investigation of mechanical properties of granulated waste rubber aggregates substituted self-compacting concrete mortar produced with different cement,” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, vol. 12, no. 3, pp. 787–798, 2020, doi: 10.29137/umagd.734614.
  • Köksal M., A., “Atık lastiklerden çıkan kauçuk ve tellerin beton üretiminde kullanılması,” Ph.D. dissertation, Necmettin Erbakan University, Konya, Türkiye, 2024.
  • Q. A. Yousif, I. Bedirhanoglu, M. E. Aydin, and Z. Zebari, “The effect of age on the compressive strength of concrete by using ultrasonic pulse velocity,” in Interdependence between Structural Engineering and Construction Management, F. Ozevin, Ed. 2019.
  • S. Gul and S. Naseer, “Concrete containing recycled rubber steel fiber,” Procedia Struct. Integr., vol. 18, pp. 101–107, 2019, doi: 10.1016/j.prostr.2019.08.144.
  • M. Abdul Rahim, S. N. A. Ramli, S. Salehuddin, N. Mohamad Ibrahim, A. Ayob, and N. L. Rahim, “The mechanical properties of crumb rubber steel fiber concrete (CRSFC),” J. Teknol., vol. 86, pp. 69–75, 2024, doi: 10.11113/jurnalteknologi.v86.20951.
  • C. Fu, H. Ye, K. Wang, K. Zhu, and C. He, “Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC),” Compos. B Eng., vol. 160, pp. 158–166, 2019, doi: 10.1016/j.compositesb.2018.10.045.
  • R. Liu, H. Li, Q. Jiang, and X. Meng, “Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete,” Structures, vol. 27, pp. 1660–1669, 2020, doi: 10.1016/j.istruc.2020.08.007.
  • Y. Gao et al., “Experimental investigation on static compressive toughness of steel fiber rubber concrete,” Rev. Adv. Mater. Sci., vol. 61, no. 1, pp. 576–586, 2022, doi: 10.1515/rams-2022-0260.
  • T. Luo, C. Zhang, C. Sun, X. Zheng, Y. Ji, and X. Yuan, “Experimental investigation on the freeze–thaw resistance of steel fibers reinforced rubber concrete,” Materials, vol. 13, no. 5, p. 1260, 2020, doi: 10.3390/ma13051260.
  • J. Yan, Y. Gao, M. Tang, N. Ding, Q. Xu, M. Peng, and H. Zhao, “Experimental study on the mechanical properties of recycled spiral steel fiber-reinforced rubber concrete,” Buildings, vol. 14, no. 4, p. 897, 2024, doi: 10.3390/buildings14040897.
There are 67 citations in total.

Details

Primary Language English
Subjects Civil Construction Engineering, Construction Materials
Journal Section Research Article
Authors

Ersin Ayhan 0000-0002-2108-0199

Murat Doğruyol 0000-0003-0406-7854

Submission Date July 6, 2025
Acceptance Date September 20, 2025
Publication Date September 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

IEEE E. Ayhan and M. Doğruyol, “Effect of Rubber and Steel Fibers Obtained from Waste Tires on Mechanical and Physical Properties of Concrete: An Experimental Study”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 3, pp. 1866–1890, 2025, doi: 10.17798/bitlisfen.1736282.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS