Review
BibTex RIS Cite

Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı

Year 2017, , 93 - 107, 25.12.2017
https://doi.org/10.17798/bitlisfen.315745

Abstract

Nitrat
yeraltı ve yüzeysel sulardaki kirletici unsurlardan biridir ve nitrat
indirgenmesinde birçok farklı proses araştırılmıştır. Biotik ve abiotik olarak
gerçekleştirilen nitrat indirgenmesinde çok çeşitli alternatifler mevcuttur.
Bir diğer yönden nano ölçekli sıfır değerlikli demir (nZVI) atıksulardaki
birçok kirleticinin giderimi için kullanılmaktadır. nZVI’ın elektron verici
olma özelliğinden dolayı daha çok kirleticilerin indirgenmesi çalışmalarında
yer almasına neden olmuştur. Literatürde yer alan çalışmalar abiyotik ve
biyotik indirgenmenin arka arkaya gerçekleştiği nZVI ile ototrofik
denitrifikasyonun bakteri nZVI işbirliğinden dolayı diğer yöntemlere göre daha
avantajlı olduğunu göstermektedir. Bu çalışmada da nitrat indirgenmesinde nZVI
kullanımının rolü, avantajları ve indirgenme mekanizması, yapılan
araştırmalardan derleyerek sunulmuştur.

References

  • [1] Till, B. A., Weathers, L. J., Alvarez, P. J. J. 1998. Fe(0)-supported autotrophic denitrification, Environ Sci Technol, 32(5): 634–639.
  • [2] Mansell, B. O. and Schroeder, E. D. 2002. Hydrogenotrophic denitrification in amicroporous membrane bioreactor, Water Res., 36(19): 4683–4690.
  • [3] Haring, V. and Conrad, R. 1991. Kinetics of H2 oxidation in respiring and denitrifying ParacoccusöDenitrificans, FEMS Microbiol Lett, 78(2-3): 259–264.
  • [4] Liessens, J., Vanbrabant, J., Vos, P., Kersters, K., Verstraete W. 1992. Mixed culture hydrogenotrophic nitrate reduction in drinking water, Microb. Ecol., 24(3): 271–290.
  • [5] Smith, R. L., Ceazan, M. L., Brooks, M. H. 1994. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination, Appl Environ Microb, 60(6): 1949–1955.
  • [6] Ho, C. M., Tseng, S. K., Chang, Y. J. 2001. Autotrophic denitrification via a novel membrane-attached biofilm reactor, Lett Appl Microbiol, 33(3): 201–205. [7] Smith, R. L., Buckwalter, S. P., Repert, D. A., Miller, D. N. 2005. Small-scale, hydrogen-oxidizingdenitrifying bioreactor for treatment of nitrate-contaminated drinking water, Water Res., 39(10): 2014–2023.
  • [8] Vasiliadou, I. A., Pavlou, S., Vayenas, D. V. 2006. A kinetic study of hydrogenotrophic denitrification, Process Biochem, 41(6): 1401–1408.
  • [9] Schnobrich, M. R., Chaplin, B. P., Semmens, M. J., Novak, P. J. 2007. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations, Water Res, 41(9): 1869–1876.
  • [10] McCarty, P. L. 1972. Stoichiometry of biological reactions. Proceedings of the international conference towards a unified concept of biological waste treatment design, Atlanta.
  • [11] Kurt, M., Dunn, I. J., and Bourne, J. R. 1987. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidizedbed biofilm reactor, Biotechnol. Bioeng.
  • [12] Claus, G., and Kutzner, H. J. 1985a. Autotrophic denitrification by thiobacillus denitrificans in a packed bed reactor, Appl. Microbiol. Biotechnol., 22(4): 289– 296.
  • [13] Claus, G., and Kutzner, H. J. 1985b. “Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans, Appl. Microbiol. Biotechnol., 22(4)): 283–288.
  • [14] Kleerebezem, R., and Mendezà, R. 2002. Autotrophic dentrification for combined hydrogen sulfide removal from biogas and postdentrification, Water Sci. Technol., 45(10): 349–356.
  • [15] Gamble, T. N., Betlach, M. R., and Tiedje, J. M. 1977. Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33(4): 926–939. [16] Biswas, S and Bose, P. 2005. Zero-Valent Iron-Assisted Autotrophic Denitrification, Journal environmental Engineering, 131(8): 1212-1220.
  • [17] Chang, C. C., Tseng, S. K., and Huang, H. K. 1999. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment, Bioresour. Technol., 69(1): 53–58.
  • [18] Kielemoes, J., De, Boever, P., Verstraete, W. 2000 Influence of denitrification on the corrosion of iron and stainless steel powder, Environ Sci Technol., 34(4): 663–671.
  • [19] Yu, X. Y., Amrhein ,C., Deshusses, M. A., Matsumoto, M. R. 2006. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron, Environ Sci Technol., 40(4): 1328–1334.
  • [20] An, Y., Li, T., Jin, Z., Dong, M., Li, Q., Wang, S. .2009. Decreasing ammonium generationusing hydrogenotrophic bacteria in the process of nitrate reduction bynanoscale zero-valent iron, Sci. Total Environ., 407(21): 5465–5470.
  • [21] Shin, K. H., Cha, D. K. 2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72(2): 257–262. [22] Huang, C.P., Wang, H.W., Chiu, C.P. 1998. Nitrate reduction by metallic iron, Water Research, 32(8): 2257-2264.
  • [23] Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5(3): 323-332.
  • [24] Zhang, W.X. 2005. Nanoscale environmental science and technology: challenges and opportunities, Environ. Sci. Technol., 39, 94A-95A.
  • [25] Gotpagar, J. K., Grulke, E. A., Tsang, T., and Bhattacharyya, D. 1997. Reductive dehalogenation of trichloroethylene using zero-valent iron, Environ. Progr., 16(2): 137-143.
  • [26] Li, F., Vipulanandan, C., and Mohanty, K.K. 2003. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Coll. Surf. A., 223(1-3) 103-112.
  • [27] You, Y., Han, J., Chiu, PC. and Jin, Y. 2005. Removal and inactivation of waterborne viruses using zerovalent iron, Environ Sci Technol., 39(23): 9263-9269.
  • [28] Phenrat, T., Long, TC., Lowry, GV. and Veronesi, B. 2009. Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron, Environ Sci Technol., 43(1): 195-200.
  • [29] Li, X. Q. and Zhang, W. 2006. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 22(10): 4638–4642.
  • [30] Thiruvenkatachari, R., Vigneswaran, S., Naidu, R. 2007. Permeable reactive barrier for groundwater remediation, Journal of Industrial and Engineering Chemistry, 14(2): 145–156.
  • [31] Li, S., Wang, W., Liang, F., Zhang, W. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theoryand application, Journal of Hazardous Materials, 322(A): 163-171.
  • [32] Dutta, S., Saha, R., Kalita, H., Bezbaruah, A. N. 2016. Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero-valent iron, Environmental Technology & Innovation, 5, 176-187.
  • [33] Wang, W., Hua, Y., Li, S., Yan, W., Zhang, W. 2016. Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): A comparative study, Chemical Engineering and Journal, 304, 79-88.
  • [34] Zhang, J., Hao, Z., Zhang, Z., Yang, Y, Xu, X. 2010. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron, Process Safety and Environmental Protection, 88(6): 439-445.
  • [35] Shin, K. H., Cha, D. K. 2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72(2): 257–62.
  • [36] Shrimali, M., Singh, K.P. 2011. New methods of nitrate removal from water, Environ Pollut, 112(3): 351- 359.
  • [37] Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., Sugiura, N. 2011. Nitrate removal from groundwater by cooperating hetero-trophic with autotrophic denitrification in a biofilm–electrode reactor. J. Hazard. Mater., 192(3): 1033–1039.
  • [38] Koenig, A., Zhang, T., Liu, L. H., Fang, H. H. 2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere, 58(8): 1041–1047.
  • [39] Van, H.M., Loosdrecht, M.C.M., Heijnen, J.J. 1999. Modelling biological phosphorus and nitrogen removal in a full scale acti-vated sludge process, Water Res, 33(16): 3459–3468.
  • [40] Show, K.Y., Lee, D.J., Pan, X. 2013. Simultaneous biological re-moval of nitrogen– sulfur–carbon: Recent advances and challenges, Biotechnol Adv., 31(4): 409–420.
  • [41] Hamlin, H.J., Michaels, J.T., Beaulaton, C.M., Graham, W.F., Dutt, W., Steinbach, P.,Losordo, T.M., Schrader, K.K., Main, K.L. 2008. Comparing denitrification rates andcarbon sources in commercial scale up flow denitrification biologicalfilters in aquaculture, Aquacult Eng., 38(2): 79–92.
  • [42] Van der Hoek, J. P., Klapwijk, A. 1988. The use of a nitrate selec-tive resin in the combined ion exchange/biological denitrification process for nitrate removal from groundwater, Water Supply, 6, 57-62.
  • [43] Kim, S., Jung, H., Kim, K.S., Kim, I.S. 2004. Treatment of high nitratecontaining wastewaters by sequential heterotrophic and autotrophic denitrification. J. Environ. Eng., 130(12): 1475–1480.
  • [44] Killingstad, M.W., Widdowson, M.A., Smith, R.L. 2002. Modeling enhanced in situ denitrification in groundwater, J. Environ. Eng., 128(6): 491–504.
  • [45] Kim, Y.S., Nakano, K., Lee, T.J., Kanchanatawee, S., Matsumura, M. 2002. On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source, J. Biosci. Bioeng., 93(3): 303–308.
  • [46] Szekeres, S., Kiss, I., Kalman, M., Soares, M.I.M. 2002. Microbial population in a hydrogen-dependent denitrification reactor, Water Res.,36(16): 4088–4094.
  • [47] Feleke, Z., Sakakibara, Y. 2002. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide, Water Res, 36(12): 3092–3102.
  • [48] Galvez, J. M., Gomez, M. A., Hontoria, E., Gonzalez-Lopez, J. 2003. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with a submerged fixed-film reactor, J. Hazard. Mater., 101(2): 219–229.
  • [49] Gomez, M.A., Galvez, J.M., Hontoria, E., Gonzalez-Lopez, J. 2003. Influence of concentration on biofilm bacterial composition from a denitrifying submerged filter used for contaminated groundwater, J. Biosci. Bioeng., 95(3): 245–251.
  • [50] Rijn, J.V., Tal, Y., Schreier, H.J. 2006. Denitrification in recirculating systems: theory and applications, Aquacul. Eng., 34(3): 364–376.
  • [51] Ghafari, S., Hasan, M., Aroua, M. K. 2008. Bio-electrochemical removal of nitrate from water and wastewater-A review, Bioresource Technology, 99(10): 3965-3974.
  • [52] Chiu, Y. C., Chung, M. S., 2003. Determination of optimal COD/nitrate ratio for biological denitrification. Int. Biodeterior, Biodegrad, 51(1): 43–49.
  • [53] Beiki, M. R., Yazdian, F., Rasekh, B., Rashedi, H., Rostami, A. D. 2016. Effect of Metal Nanoparticles on Biological Denitrification Process: A Review, Journal of Applied Biotechnology Reports, 3(1).
  • [54] An, Y., Li, T., Jin, Z., Dong, M., Li, Q. 2010. Nitrate degradation and kinetic analysis ofthe denitrification system composed of iron nanoparticles andhydrogenotrophic bacteria, Desalination, 252(1-3): 71–74.
  • [55] Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., Zhang, Y., 2017. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review, Journal of Hazardous Materials, 321: 390–407.
  • [56] Prosnansky, M., Sakakibarab, Y., Kuroda, M. 2002. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration, Water Res., 36(19): 4801–4810.
  • [57] Barnes, R. J., Van der Gast, C. J., Riba, O., Lehtivirta, L. E., Prosser, J. I., Dobson, P. J., Thomphson, I. P. 2010. The impact of zero-valent iron nanoparticles on a river water bacterial community, J Hazard Mater, 184(1-3): 73–80.
  • [58] Liu, Y., Li, S., Chen, Z., Megharaj, M., Naidu, R. 2014. Influence of zero-valent ironnanoparticles on nitrate removal by Paracoccus sp, Chemosphere, Cilt. 108, s. 426–432.
  • [59] Jiang, C., Xu, X., Megharaj, M., Naidu, R., Chen, Z. 2015. Inhibition or promotion ofbiodegradation of nitrate by Paracoccus sp. in the presence of nanoscalezero-valent iron, Sci. Total Environ., 530–531: 241–246.
  • [60] An, Y., Dong, Q., Zhang, K. 2014. Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron, Chemosphere, 103: 86-91.
  • [61] Dong, M. Y., Wang, X., Huang, F., Jin, F. H., Li, T. L. 2012. Toxicity of Fe0 Nanoparticles on the Denitrifying Bacteria-Alcaligenes Eutrophus, Advanced Materials Research, 343-344(3): 889-894.
  • [62] Chen, S. S., Hsu, H. D., Li, C. W. 2004. A new method to produce nanoscale iron for nitrate removal, Journal of nanoparticle research, 6(6): 639-647.
  • [63] Choe, S., Chang, Y. Y., Hwang, K. Y., and Khim, J. 2000. Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41(8): 1307–1311.
  • [64] Chi, I., Zhang, S. T., Lu, X., Dong, L. H., and Yao, S. L. 2004. Chemical reduction of nitrate by metallic iron, J. Water Supply: Res. Technol., AQUA, 53(1): 37–41.
  • [65] Huang, Y.H., Zhang, T.C. 2002. Kinetics of nitrate reduction by iron at near neutral pH, J. Environ. Engineer, 128(7): 604–611.
  • [66] Hu, H. Y., Goto, N., and Fujie, K. 2001. Effect of pH on the reduction of nitrite in water by metallic iron, Water Res., 35(11): 2789–2793.
  • [67] Westerhoff, P. and James, J. 2003. Nitrate removal in zero-valent iron packed columns, Water Res., 37(8): 1818–1830.
  • [68] Sciliano, A. 2015. Use of nanoscale zero-valent ıron (NZVI) particles for chemical denitrification under different operating conditions, 5(3): 1507-1519.
  • [69] Ziajahromi, S., Khanizadeh, M., Khiadani, M. 2013. Experimental evaluation of nitrate reduction from water using synthesis nanoscale zero-valent iron (NZVI) under aerobic conditions, Middle-East Journal of, 16: 205-209.
  • [70] Kim, M. S., Kwak D. H. 2014. Treatment characteristics and effects of nanoparticle zero-valent iron (nZVI) powder on nitrogen removal efficiency for sewage treatment, Water Quality Research Journal of, 49(3): 273-284.
  • [71] Lavine, B.K., Auslander, G., Ritter, J. 2001. Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment, Microchem. J., 70(2): 69–83.
  • [72] Huang, Y.H., Zhang, T.C. 2002. Kinetics of nitrate reduction by iron at near neutral pH, J. Environ. Engineer, 128(7): 604–611.
  • [73] Alowitz, M. J., Scherer, M. M. 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36(3): 299–306.
  • [74] Choe, S., Liljestrand, H. M., Khim, J. 2004. Nitrate reduction by zero-valent iron under different pH regimes, Applied Geochemistry, 19(3): 335-342.
  • [75] Matheson, L. J., Tratnyek, P. G. 1994. Abiotic and biotic aspects of reductive dechlorination of chlorinated solvents by zerovalent iron, Preprint of extended abstract, presented at Division of Environmental Chemistry, Am. Chem. Soc., 13 March, San Diego, 720–723.
  • [76] LipczyskaKochany, E., Harms, S., Milbum, R., Sprah, G., Nadarajah, N. 1994. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds, Chemosphere, 29(7): 1477–1489.
  • [77] Chen, J. L., Al-Abed, S .R., Ryan, J. A., Li, Z. B. 2001. Effects of pH on dechlorination of trichloroethylene by zero-valent iron, J. Hazard. Materials, 83(3): 243–254.
  • [78] Agrawal, A., Tratnyek, P. G. 1995. Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1): 153–160.
  • [79] Yang, G. C. C., Lee, H. L. 2005. Chemical reduction of nitrate by nanosized iron: kinetics and pathways, Water research, 39(5): 884-894.
  • [80] Ziajahromi, S., Mehrdad, M. 2012. Nitrate Removal from Water Using Synthesis Nanoscale Zero-Valent Iron (NZVI), Journal of International, 7(5): 939-943.
  • [81] Xu, J., Hao, Z., Xie. C., Lv, X., Yang, Y., Xu, X. 2012. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron, Desalination, 284: 9-13.
  • [82] Park, H.S., Park, Y.M., Oh, S.K, Lee, S.J., Choi, Y.S., Lee, S.H. 2008. Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution, The Korean Institute of Chemical Engineers, 46(5): 1008-1012.
  • [83] Park, H.S., Park Y.M., Yoo, K.M., Sang, H.l. 2009. Reduction of nitrate by resin-supported nanoscale zero-valent iron. Water Science and Technology, 59(11): 2153-2157.
  • [84] Khalil, A.M.E., Eljamal, O., Jribi, S., Matsunaga, M. 2016. Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition, Chemical Engineering Journal, 287(1): 367-380.
Year 2017, , 93 - 107, 25.12.2017
https://doi.org/10.17798/bitlisfen.315745

Abstract

References

  • [1] Till, B. A., Weathers, L. J., Alvarez, P. J. J. 1998. Fe(0)-supported autotrophic denitrification, Environ Sci Technol, 32(5): 634–639.
  • [2] Mansell, B. O. and Schroeder, E. D. 2002. Hydrogenotrophic denitrification in amicroporous membrane bioreactor, Water Res., 36(19): 4683–4690.
  • [3] Haring, V. and Conrad, R. 1991. Kinetics of H2 oxidation in respiring and denitrifying ParacoccusöDenitrificans, FEMS Microbiol Lett, 78(2-3): 259–264.
  • [4] Liessens, J., Vanbrabant, J., Vos, P., Kersters, K., Verstraete W. 1992. Mixed culture hydrogenotrophic nitrate reduction in drinking water, Microb. Ecol., 24(3): 271–290.
  • [5] Smith, R. L., Ceazan, M. L., Brooks, M. H. 1994. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination, Appl Environ Microb, 60(6): 1949–1955.
  • [6] Ho, C. M., Tseng, S. K., Chang, Y. J. 2001. Autotrophic denitrification via a novel membrane-attached biofilm reactor, Lett Appl Microbiol, 33(3): 201–205. [7] Smith, R. L., Buckwalter, S. P., Repert, D. A., Miller, D. N. 2005. Small-scale, hydrogen-oxidizingdenitrifying bioreactor for treatment of nitrate-contaminated drinking water, Water Res., 39(10): 2014–2023.
  • [8] Vasiliadou, I. A., Pavlou, S., Vayenas, D. V. 2006. A kinetic study of hydrogenotrophic denitrification, Process Biochem, 41(6): 1401–1408.
  • [9] Schnobrich, M. R., Chaplin, B. P., Semmens, M. J., Novak, P. J. 2007. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations, Water Res, 41(9): 1869–1876.
  • [10] McCarty, P. L. 1972. Stoichiometry of biological reactions. Proceedings of the international conference towards a unified concept of biological waste treatment design, Atlanta.
  • [11] Kurt, M., Dunn, I. J., and Bourne, J. R. 1987. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidizedbed biofilm reactor, Biotechnol. Bioeng.
  • [12] Claus, G., and Kutzner, H. J. 1985a. Autotrophic denitrification by thiobacillus denitrificans in a packed bed reactor, Appl. Microbiol. Biotechnol., 22(4): 289– 296.
  • [13] Claus, G., and Kutzner, H. J. 1985b. “Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans, Appl. Microbiol. Biotechnol., 22(4)): 283–288.
  • [14] Kleerebezem, R., and Mendezà, R. 2002. Autotrophic dentrification for combined hydrogen sulfide removal from biogas and postdentrification, Water Sci. Technol., 45(10): 349–356.
  • [15] Gamble, T. N., Betlach, M. R., and Tiedje, J. M. 1977. Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol., 33(4): 926–939. [16] Biswas, S and Bose, P. 2005. Zero-Valent Iron-Assisted Autotrophic Denitrification, Journal environmental Engineering, 131(8): 1212-1220.
  • [17] Chang, C. C., Tseng, S. K., and Huang, H. K. 1999. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment, Bioresour. Technol., 69(1): 53–58.
  • [18] Kielemoes, J., De, Boever, P., Verstraete, W. 2000 Influence of denitrification on the corrosion of iron and stainless steel powder, Environ Sci Technol., 34(4): 663–671.
  • [19] Yu, X. Y., Amrhein ,C., Deshusses, M. A., Matsumoto, M. R. 2006. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron, Environ Sci Technol., 40(4): 1328–1334.
  • [20] An, Y., Li, T., Jin, Z., Dong, M., Li, Q., Wang, S. .2009. Decreasing ammonium generationusing hydrogenotrophic bacteria in the process of nitrate reduction bynanoscale zero-valent iron, Sci. Total Environ., 407(21): 5465–5470.
  • [21] Shin, K. H., Cha, D. K. 2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72(2): 257–262. [22] Huang, C.P., Wang, H.W., Chiu, C.P. 1998. Nitrate reduction by metallic iron, Water Research, 32(8): 2257-2264.
  • [23] Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5(3): 323-332.
  • [24] Zhang, W.X. 2005. Nanoscale environmental science and technology: challenges and opportunities, Environ. Sci. Technol., 39, 94A-95A.
  • [25] Gotpagar, J. K., Grulke, E. A., Tsang, T., and Bhattacharyya, D. 1997. Reductive dehalogenation of trichloroethylene using zero-valent iron, Environ. Progr., 16(2): 137-143.
  • [26] Li, F., Vipulanandan, C., and Mohanty, K.K. 2003. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Coll. Surf. A., 223(1-3) 103-112.
  • [27] You, Y., Han, J., Chiu, PC. and Jin, Y. 2005. Removal and inactivation of waterborne viruses using zerovalent iron, Environ Sci Technol., 39(23): 9263-9269.
  • [28] Phenrat, T., Long, TC., Lowry, GV. and Veronesi, B. 2009. Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron, Environ Sci Technol., 43(1): 195-200.
  • [29] Li, X. Q. and Zhang, W. 2006. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 22(10): 4638–4642.
  • [30] Thiruvenkatachari, R., Vigneswaran, S., Naidu, R. 2007. Permeable reactive barrier for groundwater remediation, Journal of Industrial and Engineering Chemistry, 14(2): 145–156.
  • [31] Li, S., Wang, W., Liang, F., Zhang, W. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theoryand application, Journal of Hazardous Materials, 322(A): 163-171.
  • [32] Dutta, S., Saha, R., Kalita, H., Bezbaruah, A. N. 2016. Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero-valent iron, Environmental Technology & Innovation, 5, 176-187.
  • [33] Wang, W., Hua, Y., Li, S., Yan, W., Zhang, W. 2016. Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): A comparative study, Chemical Engineering and Journal, 304, 79-88.
  • [34] Zhang, J., Hao, Z., Zhang, Z., Yang, Y, Xu, X. 2010. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron, Process Safety and Environmental Protection, 88(6): 439-445.
  • [35] Shin, K. H., Cha, D. K. 2008. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72(2): 257–62.
  • [36] Shrimali, M., Singh, K.P. 2011. New methods of nitrate removal from water, Environ Pollut, 112(3): 351- 359.
  • [37] Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., Sugiura, N. 2011. Nitrate removal from groundwater by cooperating hetero-trophic with autotrophic denitrification in a biofilm–electrode reactor. J. Hazard. Mater., 192(3): 1033–1039.
  • [38] Koenig, A., Zhang, T., Liu, L. H., Fang, H. H. 2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere, 58(8): 1041–1047.
  • [39] Van, H.M., Loosdrecht, M.C.M., Heijnen, J.J. 1999. Modelling biological phosphorus and nitrogen removal in a full scale acti-vated sludge process, Water Res, 33(16): 3459–3468.
  • [40] Show, K.Y., Lee, D.J., Pan, X. 2013. Simultaneous biological re-moval of nitrogen– sulfur–carbon: Recent advances and challenges, Biotechnol Adv., 31(4): 409–420.
  • [41] Hamlin, H.J., Michaels, J.T., Beaulaton, C.M., Graham, W.F., Dutt, W., Steinbach, P.,Losordo, T.M., Schrader, K.K., Main, K.L. 2008. Comparing denitrification rates andcarbon sources in commercial scale up flow denitrification biologicalfilters in aquaculture, Aquacult Eng., 38(2): 79–92.
  • [42] Van der Hoek, J. P., Klapwijk, A. 1988. The use of a nitrate selec-tive resin in the combined ion exchange/biological denitrification process for nitrate removal from groundwater, Water Supply, 6, 57-62.
  • [43] Kim, S., Jung, H., Kim, K.S., Kim, I.S. 2004. Treatment of high nitratecontaining wastewaters by sequential heterotrophic and autotrophic denitrification. J. Environ. Eng., 130(12): 1475–1480.
  • [44] Killingstad, M.W., Widdowson, M.A., Smith, R.L. 2002. Modeling enhanced in situ denitrification in groundwater, J. Environ. Eng., 128(6): 491–504.
  • [45] Kim, Y.S., Nakano, K., Lee, T.J., Kanchanatawee, S., Matsumura, M. 2002. On-site nitrate removal of groundwater by an immobilized psychrophilic denitrifier using soluble starch as a carbon source, J. Biosci. Bioeng., 93(3): 303–308.
  • [46] Szekeres, S., Kiss, I., Kalman, M., Soares, M.I.M. 2002. Microbial population in a hydrogen-dependent denitrification reactor, Water Res.,36(16): 4088–4094.
  • [47] Feleke, Z., Sakakibara, Y. 2002. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide, Water Res, 36(12): 3092–3102.
  • [48] Galvez, J. M., Gomez, M. A., Hontoria, E., Gonzalez-Lopez, J. 2003. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with a submerged fixed-film reactor, J. Hazard. Mater., 101(2): 219–229.
  • [49] Gomez, M.A., Galvez, J.M., Hontoria, E., Gonzalez-Lopez, J. 2003. Influence of concentration on biofilm bacterial composition from a denitrifying submerged filter used for contaminated groundwater, J. Biosci. Bioeng., 95(3): 245–251.
  • [50] Rijn, J.V., Tal, Y., Schreier, H.J. 2006. Denitrification in recirculating systems: theory and applications, Aquacul. Eng., 34(3): 364–376.
  • [51] Ghafari, S., Hasan, M., Aroua, M. K. 2008. Bio-electrochemical removal of nitrate from water and wastewater-A review, Bioresource Technology, 99(10): 3965-3974.
  • [52] Chiu, Y. C., Chung, M. S., 2003. Determination of optimal COD/nitrate ratio for biological denitrification. Int. Biodeterior, Biodegrad, 51(1): 43–49.
  • [53] Beiki, M. R., Yazdian, F., Rasekh, B., Rashedi, H., Rostami, A. D. 2016. Effect of Metal Nanoparticles on Biological Denitrification Process: A Review, Journal of Applied Biotechnology Reports, 3(1).
  • [54] An, Y., Li, T., Jin, Z., Dong, M., Li, Q. 2010. Nitrate degradation and kinetic analysis ofthe denitrification system composed of iron nanoparticles andhydrogenotrophic bacteria, Desalination, 252(1-3): 71–74.
  • [55] Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., Zhang, Y., 2017. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review, Journal of Hazardous Materials, 321: 390–407.
  • [56] Prosnansky, M., Sakakibarab, Y., Kuroda, M. 2002. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration, Water Res., 36(19): 4801–4810.
  • [57] Barnes, R. J., Van der Gast, C. J., Riba, O., Lehtivirta, L. E., Prosser, J. I., Dobson, P. J., Thomphson, I. P. 2010. The impact of zero-valent iron nanoparticles on a river water bacterial community, J Hazard Mater, 184(1-3): 73–80.
  • [58] Liu, Y., Li, S., Chen, Z., Megharaj, M., Naidu, R. 2014. Influence of zero-valent ironnanoparticles on nitrate removal by Paracoccus sp, Chemosphere, Cilt. 108, s. 426–432.
  • [59] Jiang, C., Xu, X., Megharaj, M., Naidu, R., Chen, Z. 2015. Inhibition or promotion ofbiodegradation of nitrate by Paracoccus sp. in the presence of nanoscalezero-valent iron, Sci. Total Environ., 530–531: 241–246.
  • [60] An, Y., Dong, Q., Zhang, K. 2014. Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron, Chemosphere, 103: 86-91.
  • [61] Dong, M. Y., Wang, X., Huang, F., Jin, F. H., Li, T. L. 2012. Toxicity of Fe0 Nanoparticles on the Denitrifying Bacteria-Alcaligenes Eutrophus, Advanced Materials Research, 343-344(3): 889-894.
  • [62] Chen, S. S., Hsu, H. D., Li, C. W. 2004. A new method to produce nanoscale iron for nitrate removal, Journal of nanoparticle research, 6(6): 639-647.
  • [63] Choe, S., Chang, Y. Y., Hwang, K. Y., and Khim, J. 2000. Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41(8): 1307–1311.
  • [64] Chi, I., Zhang, S. T., Lu, X., Dong, L. H., and Yao, S. L. 2004. Chemical reduction of nitrate by metallic iron, J. Water Supply: Res. Technol., AQUA, 53(1): 37–41.
  • [65] Huang, Y.H., Zhang, T.C. 2002. Kinetics of nitrate reduction by iron at near neutral pH, J. Environ. Engineer, 128(7): 604–611.
  • [66] Hu, H. Y., Goto, N., and Fujie, K. 2001. Effect of pH on the reduction of nitrite in water by metallic iron, Water Res., 35(11): 2789–2793.
  • [67] Westerhoff, P. and James, J. 2003. Nitrate removal in zero-valent iron packed columns, Water Res., 37(8): 1818–1830.
  • [68] Sciliano, A. 2015. Use of nanoscale zero-valent ıron (NZVI) particles for chemical denitrification under different operating conditions, 5(3): 1507-1519.
  • [69] Ziajahromi, S., Khanizadeh, M., Khiadani, M. 2013. Experimental evaluation of nitrate reduction from water using synthesis nanoscale zero-valent iron (NZVI) under aerobic conditions, Middle-East Journal of, 16: 205-209.
  • [70] Kim, M. S., Kwak D. H. 2014. Treatment characteristics and effects of nanoparticle zero-valent iron (nZVI) powder on nitrogen removal efficiency for sewage treatment, Water Quality Research Journal of, 49(3): 273-284.
  • [71] Lavine, B.K., Auslander, G., Ritter, J. 2001. Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment, Microchem. J., 70(2): 69–83.
  • [72] Huang, Y.H., Zhang, T.C. 2002. Kinetics of nitrate reduction by iron at near neutral pH, J. Environ. Engineer, 128(7): 604–611.
  • [73] Alowitz, M. J., Scherer, M. M. 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36(3): 299–306.
  • [74] Choe, S., Liljestrand, H. M., Khim, J. 2004. Nitrate reduction by zero-valent iron under different pH regimes, Applied Geochemistry, 19(3): 335-342.
  • [75] Matheson, L. J., Tratnyek, P. G. 1994. Abiotic and biotic aspects of reductive dechlorination of chlorinated solvents by zerovalent iron, Preprint of extended abstract, presented at Division of Environmental Chemistry, Am. Chem. Soc., 13 March, San Diego, 720–723.
  • [76] LipczyskaKochany, E., Harms, S., Milbum, R., Sprah, G., Nadarajah, N. 1994. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds, Chemosphere, 29(7): 1477–1489.
  • [77] Chen, J. L., Al-Abed, S .R., Ryan, J. A., Li, Z. B. 2001. Effects of pH on dechlorination of trichloroethylene by zero-valent iron, J. Hazard. Materials, 83(3): 243–254.
  • [78] Agrawal, A., Tratnyek, P. G. 1995. Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1): 153–160.
  • [79] Yang, G. C. C., Lee, H. L. 2005. Chemical reduction of nitrate by nanosized iron: kinetics and pathways, Water research, 39(5): 884-894.
  • [80] Ziajahromi, S., Mehrdad, M. 2012. Nitrate Removal from Water Using Synthesis Nanoscale Zero-Valent Iron (NZVI), Journal of International, 7(5): 939-943.
  • [81] Xu, J., Hao, Z., Xie. C., Lv, X., Yang, Y., Xu, X. 2012. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron, Desalination, 284: 9-13.
  • [82] Park, H.S., Park, Y.M., Oh, S.K, Lee, S.J., Choi, Y.S., Lee, S.H. 2008. Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution, The Korean Institute of Chemical Engineers, 46(5): 1008-1012.
  • [83] Park, H.S., Park Y.M., Yoo, K.M., Sang, H.l. 2009. Reduction of nitrate by resin-supported nanoscale zero-valent iron. Water Science and Technology, 59(11): 2153-2157.
  • [84] Khalil, A.M.E., Eljamal, O., Jribi, S., Matsunaga, M. 2016. Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition, Chemical Engineering Journal, 287(1): 367-380.
There are 81 citations in total.

Details

Journal Section Articles
Authors

Hande Türk

Özge Hanay This is me

Publication Date December 25, 2017
Submission Date May 24, 2017
Acceptance Date October 17, 2017
Published in Issue Year 2017

Cite

IEEE H. Türk and Ö. Hanay, “Nitrat İndirgenmesinde Nano Ölçekli Sıfır Değerlikli Demir (nZVI) Kullanımı”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, pp. 93–107, 2017, doi: 10.17798/bitlisfen.315745.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr