Research Article
BibTex RIS Cite

NaCl-NaH2PO2- Zn(H2PO2)2-H2O Dörtlü Sisteminin 333.15K’de Katı-Sıvı Faz Dengelerinin İncelenmesi

Year 2018, , 57 - 62, 29.06.2018
https://doi.org/10.17798/bitlisfen.414674

Abstract

NaCl-NaH2PO2-Zn(H2PO2)2-H2O
dörtlü sisteminin katı-sıvı faz dengeleri 333.15K’de izotermal çözünürlük
metoduna göre yapılmıştır. Bu tuzların doygun çözeltideki çözünürlük verileri
tespit edilmiştir. Bu dörtlü sistemin NaCl,
NaH2PO2.H2O
ve Zn(H2PO2)2.H2O
’den oluşan üç kristallenme alanlı, tek ötonik noktalı
basit ötonik tipli olduğu bulunmuştur. Çalışılan bu dörtlü sistemin ötonik
noktasının bileşimi
%6.79
Zn(H2PO2)2, % 43.13 NaH2PO2,%6.71
NaCl ve %43.37 H2O olarak tespit edilmiştir. Ayrıca ötonik noktanın
100 mol tuz bileşimi 5.44 mol Zn(H2PO2)2, 76.62
mol NaH2PO2 ve 17.94 mol  NaCl olarak hesaplanmıştır. Zn(H2PO2)2’in
kristallenme alanı en geniştir, aynı zamanda çözünürlüğü en düşük olandır ve
kristalizasyonla kolayca ayrılabilir.

References

  • Civelekoğlu H. 1987. İnorganik teknolojiler, İTÜ Maden Fakültesi ofset Atölyesi, İstanbul.
  • Olcay A. 1998. Kimyasal Teknolojiler , Gazi Kitabevi, Ankara.
  • Mastai Y. 2012. Advances In Crystallization Processes, InTech, Rijeka.
  • Lu BL., Zhang MJ. 1994. Study on phase-dıagram of the Na+, NH4+ Cl-, SO42-, H2O system at 100-degrees-C - the fundamental of utılızatıon of NaHCO3 mother lıquıd of natural soda brınes by ammonıatıon carbonatıon process, Acta Chımıca Sınıca, 52 (7): 634-638.
  • http://english.isl.cas.cn/. (Erişim tarihi: 23/03/2018).
  • Alisoğlu V. 2002. Analyse Physico-chimique du Systeme Quaternaire Na+, Mn2+/ Cl-, (H2PO2)-//H2O, C.R., Chimie 5, 547-549.
  • Karyagin YV. 1947. Chistye Khimicheskie Reaktivy, İzd.vo. Khim. Lit., M.L., 290.
  • Wu W., Lv S., Liu X., Qu H., Zhang H., Xu J. 2014. Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites, J Therm Anal Calorim, 118, 1569–1575.
  • Suekkhayad A., Noisong P., Danvirutai C., Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2_H2O precursor, J Therm Anal Calorim, 129, 123–134.
  • Cao H., Zhou H., Bai X., Ma R., Tan L., Wang J. 2016. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K, J. Chem. Thermodynamics 93, 255–260.
  • Yin J., Shi X., Zhou H., Tang J., Dai Y., Bai X. 2017. Solid−Liquid Phase Equilibria of (Ca(H2PO2)2 + H2O), (Ca(H2PO2)2 + CaCl2 + H2O), and (Ca(H2PO2)2 + NaH2PO2 + H2O) Systems, J. Chem. Eng. Data, 62, 744−751.
  • Gao S., Shi X., Yin J., Wan Z., Zhou H., Li G. 2016. Solid-liquid phase equilibria of (Mg(H2PO2)2+H2O), (Mg(H2PO2)2 +NaH2PO2+H2O) and (Mg(H2PO2)2+MgCl2+H2O) systems, Fluid Phase Equilibria 411, 7-12.
  • Shi X., Yin J., Zhou H., Gu X., Dai Y., Tang J. 2017. Solid−Liquid Phase Equilibria of (Mg(H2PO2)2 + NaH2PO2 + H2O) and (Mg(H2PO2)2 + MgCl2 + H2O) Systems at 323.15 K, J. Chem. Eng. Data, 62, 1011−1017.
  • Deya MC., Blustein G., Romagnoli R. 2009. Zinc hypophosphite: a suitable additive for anticorrosive paints to promote pigments synergism, J. Coat. Technol. Res., 6 (3): 369–376.
  • ZengY., Yi J., Wang H., Zhou G., Liu S. 2005. Theoretical study of H2PO2- adsorption on Ni(111) and Cu(111) surfaces, Journal of Molecular Structure, 724, 81–86.
  • Erge H., Adiguzel V., Alisoglu V. 2013. Study of the solubility in Na–Ba–Cl–H2O, Na–Ba–H2PO2–H2O, Na–Cl–H2PO2–H2O, and Ba–Cl–H2PO2–H2O ternaries, and in Na+, Ba2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 0 oC, Fluid Phase Equilib. 344, 13–18.
  • Adiguzel V., Erge H., Alisoglu V., Necefoglu H. 2014. Study of the solubility, viscosity and density in Na+,Zn2+/Cl--H2O, Na+-Zn2+-(H2PO2)--H2O, Na+, Cl-/(H2PO2)--H2O, and Zn2+,Cl-/(H2PO2)--H2O ternary systems, and in Na+,Zn2+/Cl-,(H2PO2)-//H2O reciprocal quaternary system at 273.15 K, J. Chem. Thermodyn. 75, 35–44.
  • Tan LN., Wang JM., Zhou H., et al. 2015. Solid–liquid phase equilibria of Ca(H2PO2)2–CaCl2–H2O and Ca(H2PO2)2–NaH2PO2–H2O ternary systems at 298.15 K, Fluid Phase Equilib. 388, 66–70.
  • Demirci S., Adıgüzel V., Şahin Ö. 2016. The Solubilities and Physicochemical Properties of NaH2PO2-NaCl-H2O, NaH2PO2-Zn(H2PO2)2-H2O, and NaCI Zn(H2PO2)2-H2O Ternary Systems and in NaH2PO2-NaCl-Zn(H2PO2)2-H2O Quaternary System at 298.15 K, Journal of chemical engineering and data, 61 (7): 2292-2298.
  • Gündüz T. 1999. Kantitatif Analiz Laboratuar Kitabı, Gazi Kitabevi, Ankara.
  • Alişoğlu V. 1973. Potasyum ve Manganın Bromür ve Sülfatlarını İhtiva Eden Karşılıklı Su-Tuz Sisteminin Fizikokimyasal Araştırılması, Doktora Tezi, 167s, Bakü.
  • Adıgüzel V., Demirci S., Şahin Ö., İzgi MS. 2017. Solid-Liquid Equilibria (SLE) of Ternary System NaCl+Zn(H2PO2)2+H2O at T=(313.15 and 333.15 K), International Conference on Application in Chemistry and Chemical Engineering, October 11-15, Sarajevo.
  • Demirci S., Adıgüzel V., Şahin Ö., İzgi MS. 2017. Solubility Behavior of Na+, Zn2+/ H2PO2-//H2O Ternary System At Different Temperatures , International Conference on Application in Chemistry and Chemical Engineering, October 11-15, Sarajevo.
Year 2018, , 57 - 62, 29.06.2018
https://doi.org/10.17798/bitlisfen.414674

Abstract

References

  • Civelekoğlu H. 1987. İnorganik teknolojiler, İTÜ Maden Fakültesi ofset Atölyesi, İstanbul.
  • Olcay A. 1998. Kimyasal Teknolojiler , Gazi Kitabevi, Ankara.
  • Mastai Y. 2012. Advances In Crystallization Processes, InTech, Rijeka.
  • Lu BL., Zhang MJ. 1994. Study on phase-dıagram of the Na+, NH4+ Cl-, SO42-, H2O system at 100-degrees-C - the fundamental of utılızatıon of NaHCO3 mother lıquıd of natural soda brınes by ammonıatıon carbonatıon process, Acta Chımıca Sınıca, 52 (7): 634-638.
  • http://english.isl.cas.cn/. (Erişim tarihi: 23/03/2018).
  • Alisoğlu V. 2002. Analyse Physico-chimique du Systeme Quaternaire Na+, Mn2+/ Cl-, (H2PO2)-//H2O, C.R., Chimie 5, 547-549.
  • Karyagin YV. 1947. Chistye Khimicheskie Reaktivy, İzd.vo. Khim. Lit., M.L., 290.
  • Wu W., Lv S., Liu X., Qu H., Zhang H., Xu J. 2014. Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites, J Therm Anal Calorim, 118, 1569–1575.
  • Suekkhayad A., Noisong P., Danvirutai C., Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2_H2O precursor, J Therm Anal Calorim, 129, 123–134.
  • Cao H., Zhou H., Bai X., Ma R., Tan L., Wang J. 2016. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K, J. Chem. Thermodynamics 93, 255–260.
  • Yin J., Shi X., Zhou H., Tang J., Dai Y., Bai X. 2017. Solid−Liquid Phase Equilibria of (Ca(H2PO2)2 + H2O), (Ca(H2PO2)2 + CaCl2 + H2O), and (Ca(H2PO2)2 + NaH2PO2 + H2O) Systems, J. Chem. Eng. Data, 62, 744−751.
  • Gao S., Shi X., Yin J., Wan Z., Zhou H., Li G. 2016. Solid-liquid phase equilibria of (Mg(H2PO2)2+H2O), (Mg(H2PO2)2 +NaH2PO2+H2O) and (Mg(H2PO2)2+MgCl2+H2O) systems, Fluid Phase Equilibria 411, 7-12.
  • Shi X., Yin J., Zhou H., Gu X., Dai Y., Tang J. 2017. Solid−Liquid Phase Equilibria of (Mg(H2PO2)2 + NaH2PO2 + H2O) and (Mg(H2PO2)2 + MgCl2 + H2O) Systems at 323.15 K, J. Chem. Eng. Data, 62, 1011−1017.
  • Deya MC., Blustein G., Romagnoli R. 2009. Zinc hypophosphite: a suitable additive for anticorrosive paints to promote pigments synergism, J. Coat. Technol. Res., 6 (3): 369–376.
  • ZengY., Yi J., Wang H., Zhou G., Liu S. 2005. Theoretical study of H2PO2- adsorption on Ni(111) and Cu(111) surfaces, Journal of Molecular Structure, 724, 81–86.
  • Erge H., Adiguzel V., Alisoglu V. 2013. Study of the solubility in Na–Ba–Cl–H2O, Na–Ba–H2PO2–H2O, Na–Cl–H2PO2–H2O, and Ba–Cl–H2PO2–H2O ternaries, and in Na+, Ba2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 0 oC, Fluid Phase Equilib. 344, 13–18.
  • Adiguzel V., Erge H., Alisoglu V., Necefoglu H. 2014. Study of the solubility, viscosity and density in Na+,Zn2+/Cl--H2O, Na+-Zn2+-(H2PO2)--H2O, Na+, Cl-/(H2PO2)--H2O, and Zn2+,Cl-/(H2PO2)--H2O ternary systems, and in Na+,Zn2+/Cl-,(H2PO2)-//H2O reciprocal quaternary system at 273.15 K, J. Chem. Thermodyn. 75, 35–44.
  • Tan LN., Wang JM., Zhou H., et al. 2015. Solid–liquid phase equilibria of Ca(H2PO2)2–CaCl2–H2O and Ca(H2PO2)2–NaH2PO2–H2O ternary systems at 298.15 K, Fluid Phase Equilib. 388, 66–70.
  • Demirci S., Adıgüzel V., Şahin Ö. 2016. The Solubilities and Physicochemical Properties of NaH2PO2-NaCl-H2O, NaH2PO2-Zn(H2PO2)2-H2O, and NaCI Zn(H2PO2)2-H2O Ternary Systems and in NaH2PO2-NaCl-Zn(H2PO2)2-H2O Quaternary System at 298.15 K, Journal of chemical engineering and data, 61 (7): 2292-2298.
  • Gündüz T. 1999. Kantitatif Analiz Laboratuar Kitabı, Gazi Kitabevi, Ankara.
  • Alişoğlu V. 1973. Potasyum ve Manganın Bromür ve Sülfatlarını İhtiva Eden Karşılıklı Su-Tuz Sisteminin Fizikokimyasal Araştırılması, Doktora Tezi, 167s, Bakü.
  • Adıgüzel V., Demirci S., Şahin Ö., İzgi MS. 2017. Solid-Liquid Equilibria (SLE) of Ternary System NaCl+Zn(H2PO2)2+H2O at T=(313.15 and 333.15 K), International Conference on Application in Chemistry and Chemical Engineering, October 11-15, Sarajevo.
  • Demirci S., Adıgüzel V., Şahin Ö., İzgi MS. 2017. Solubility Behavior of Na+, Zn2+/ H2PO2-//H2O Ternary System At Different Temperatures , International Conference on Application in Chemistry and Chemical Engineering, October 11-15, Sarajevo.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Sevilay Demirci 0000-0003-4028-5699

Vedat Adıgüzel 0000-0001-7514-7144

Ömer Şahin 0000-0003-4575-3762

Publication Date June 29, 2018
Submission Date April 12, 2018
Acceptance Date June 5, 2018
Published in Issue Year 2018

Cite

IEEE S. Demirci, V. Adıgüzel, and Ö. Şahin, “NaCl-NaH2PO2- Zn(H2PO2)2-H2O Dörtlü Sisteminin 333.15K’de Katı-Sıvı Faz Dengelerinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 1, pp. 57–62, 2018, doi: 10.17798/bitlisfen.414674.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS