Research Article
BibTex RIS Cite

Ratlarda Siklofosfamid Nedenli Kardiyotoksisite Üzerine Borik Asitin Koruyucu Etkileri

Year 2018, , 113 - 118, 29.06.2018
https://doi.org/10.17798/bitlisfen.415381

Abstract

Borik asit
(BA), antioksidan özellikleri ve antioksidan savunma sistemi güçlendirici
özellikleri ile bilinen bitkiler, insanlar ve hayvanlar için bir eser
mineraldir. Bu çalışma, deneysel sıçanlarda BA’nın siklofosfamid (SF) nedenli
akut kalp toksisitesi üzerindeki koruyucu etkilerini araştırmayı
amaçlamaktadır. Bu amaçla, her grupta 6 hayvan olacak şekilde sıçanlar 4 gruba
ayrılmıştır (Kontrol, SF (200 mg/kg) grubu, BA (200 mg/kg) grubu ve BA+SF
grubu). Hayvanların doku ve kan örnekleri morfolojik ve biyokimyasal
değerlendirmeler için toplanmıştır. Tek doz SF verilen grupta,  kreatin kinaz (CK-MB), laktat dehidrojenez
(LDH) ve yapısal değişikliklerin bir işareti olarak kabul edilen iskemi
modifiye albümin (IMA) gibi kardiyak biyokimyasal belirteçler anlamlı olarak
arttığı görülmüştür. Diğer taraftan, BA ile ön koruma yapılan BA+SF verilen
grupta CK-MB, LDH ve IMA düzeyleri anlamlı düzeyle azalmıştır. Bulgularımız, BA
tedavisinin sıçanlar üzerindeki toksik etkileri başarılı bir şekilde
değiştirdiğini göstermiştir. Sonuç olarak, SF uygulmasından önce yapılan BA
tedavisi kalp dokusunu, meydana gelen toksisiteye karşı koruyabilir.

References

  • 1. Cetik S., Ayhanci, A., Sahinturk, V. 2015. Protective Effect of Carvacrol Against Oxidative Stress and Heart Injury in Cyclophosphamide–Induced Cardiotoxicity in Rat. Brazilian Archives of Biology and Technology, 58 (4); 569-576.
  • 2. Nagi M., Al-Shabanah O., Hafez M., Sayed-Ahmed M. 2010. Thymoquinone Supplementation Attenuates Cyclophosphamide-Induced Cardio toxicity in Rats. Journal of Biochemical and Molecular Toxicology, 25(3):135-42
  • 3. Kawabata T.T., Chapman M.Y., Kim D.H., Stevens W.D., Holsapple M.P. 1990. Mechanism of in vitro Immunosuppression by Hepatocyte Generated Cyclophosphamide Metabolites and 4–Hydroxicyclophosphamide, Biochemical Pharmacology, 40 (5): 927 – 935.
  • 4. Yousif A. 2010. Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues. Oxidative Medicine and Cellular Longevity, 3(5): 308–316.
  • 5. Janero D.R., Hreniuk, D., Sharif, H.M. 1991. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): Lethal peroxidative membrane injury. Journal of Cellular Physiology, 149(3):347– 364.
  • 6. Shanholtz C.2001. Acute life-threatening toxicity of cancer treatment. Crit Care Clin. 17(3):483–502.
  • 7. Ludeman SM. 1999. The chemistry of the metabolites of cyclophosphamide. Current Pharmaceutical Design, 5(8):627–643.
  • 8. Henderson K., Stella SL., Kobylewski S., Eckhert CD. 2009. Receptor activated Ca(2+) release is inhibited by boric acid in prostate cancer cells. PLoS One 4(6): e6009.
  • 9. Ustundag A., Behm C., Follmann W., Duydu Y., Degen G.H. 2014. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells. Archives of Toxicology, 88(6): 1281-1289.
  • 10. Sogut I., Oglakci A., Kartkaya K., Ol K.K., Sogut M.S., Kanbak G., Inal M.E. 2015. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Experimental and Therapeutic Medicine,. 9(3): 1023-1027.
  • 11. Goudarzia M, Khodayara MJ, Tabatabaeib SMTH, Ghaznavic HFI, Mehrzadi S. 2017. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundamental & Clinical Pharmacology. 625–635.
  • 12. Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I. 2012. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice. Drug Chemical Toxicology, 35(3):285-92.
  • 13. Tarek M.K., Motawi Nermin A.H., Sadik A.R. 2010. Food and Chemical Toxicology. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide induced oxidative injury: An experimental study on rat myocardium, Testicles and urinary bladder, Volume 48, Issues 8–9, Pages 2326–2336.
  • 14. Mythili Y,, Sudharsan P,T,, Selvakumar E,, Varalakshmi P. 2004. Protective effect of DL-α-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chemico-Biological Interactions, 151(1):13–19.
Year 2018, , 113 - 118, 29.06.2018
https://doi.org/10.17798/bitlisfen.415381

Abstract

References

  • 1. Cetik S., Ayhanci, A., Sahinturk, V. 2015. Protective Effect of Carvacrol Against Oxidative Stress and Heart Injury in Cyclophosphamide–Induced Cardiotoxicity in Rat. Brazilian Archives of Biology and Technology, 58 (4); 569-576.
  • 2. Nagi M., Al-Shabanah O., Hafez M., Sayed-Ahmed M. 2010. Thymoquinone Supplementation Attenuates Cyclophosphamide-Induced Cardio toxicity in Rats. Journal of Biochemical and Molecular Toxicology, 25(3):135-42
  • 3. Kawabata T.T., Chapman M.Y., Kim D.H., Stevens W.D., Holsapple M.P. 1990. Mechanism of in vitro Immunosuppression by Hepatocyte Generated Cyclophosphamide Metabolites and 4–Hydroxicyclophosphamide, Biochemical Pharmacology, 40 (5): 927 – 935.
  • 4. Yousif A. 2010. Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues. Oxidative Medicine and Cellular Longevity, 3(5): 308–316.
  • 5. Janero D.R., Hreniuk, D., Sharif, H.M. 1991. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): Lethal peroxidative membrane injury. Journal of Cellular Physiology, 149(3):347– 364.
  • 6. Shanholtz C.2001. Acute life-threatening toxicity of cancer treatment. Crit Care Clin. 17(3):483–502.
  • 7. Ludeman SM. 1999. The chemistry of the metabolites of cyclophosphamide. Current Pharmaceutical Design, 5(8):627–643.
  • 8. Henderson K., Stella SL., Kobylewski S., Eckhert CD. 2009. Receptor activated Ca(2+) release is inhibited by boric acid in prostate cancer cells. PLoS One 4(6): e6009.
  • 9. Ustundag A., Behm C., Follmann W., Duydu Y., Degen G.H. 2014. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells. Archives of Toxicology, 88(6): 1281-1289.
  • 10. Sogut I., Oglakci A., Kartkaya K., Ol K.K., Sogut M.S., Kanbak G., Inal M.E. 2015. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Experimental and Therapeutic Medicine,. 9(3): 1023-1027.
  • 11. Goudarzia M, Khodayara MJ, Tabatabaeib SMTH, Ghaznavic HFI, Mehrzadi S. 2017. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundamental & Clinical Pharmacology. 625–635.
  • 12. Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I. 2012. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice. Drug Chemical Toxicology, 35(3):285-92.
  • 13. Tarek M.K., Motawi Nermin A.H., Sadik A.R. 2010. Food and Chemical Toxicology. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide induced oxidative injury: An experimental study on rat myocardium, Testicles and urinary bladder, Volume 48, Issues 8–9, Pages 2326–2336.
  • 14. Mythili Y,, Sudharsan P,T,, Selvakumar E,, Varalakshmi P. 2004. Protective effect of DL-α-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chemico-Biological Interactions, 151(1):13–19.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mustafa Cengiz

Publication Date June 29, 2018
Submission Date April 15, 2018
Acceptance Date May 7, 2018
Published in Issue Year 2018

Cite

IEEE M. Cengiz, “Ratlarda Siklofosfamid Nedenli Kardiyotoksisite Üzerine Borik Asitin Koruyucu Etkileri”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 1, pp. 113–118, 2018, doi: 10.17798/bitlisfen.415381.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS