İğde Çekirdeğinden Elde Edilen Aktif Karbon Kullanılarak Sulu Çözeltilerden Pb(II) Adsorpsiyonun İncelenmesi: İzoterm ve Kinetik
Year 2018,
, 256 - 267, 28.12.2018
Orhan Baytar
,
Ayhan Abdullah Ceyhan
,
Ömer Şahin
Abstract
Bu çalışmada,
önceki çalışmamızda ZnCI2 aktifleştiricisi kullanılarak kimyasal
aktivasyon yöntemi ile iğde çekirdeğinden elde edilen 1836 m2/g BET
yüzey alanına sahip aktif karbon kullanılarak sulu çözeltilerden Pb(II)
adsorpsiyonu incelenmiştir. Bu amaçla, çözelti pH’ı, aktif karbon miktarı,
çözelti başlangıç derişimi ve işlem sıcaklığı parametrelerinin Pb(II)
adsorpsiyonuna etkileri ayrı ayrı incelenmiştir. Artan sıcaklık ve aktif karbon
miktarı ile Pb(II) giderim yüzdesinin arttığı belirlenmiştir. Adsorpsiyon denge
verilerinin Langmuir izotermine uyduğu tespit edilmiş olup, maksimum
adsorpsiyon kapasitesi (qmaks) çözelti başlangıç pH değeri pH=4’de
86,207 mg.g-1 olarak bulunmuştur. Sulu çözeltiden Pb(II) adsorpsiyon
kinetiğinin Elovich kinetik model ile uyumlu olduğu tespit edilmiştir. Partikül
içi difüzyon modeli sonuçlarına göre adsorpsiyon işleminin birden fazla
basamakta gerçekleştiği ve difüzyonu kontrol eden basamağın en küçük difüzyon
katsayısına (1,455) sahip olan 3. basamak olduğu belirlenmiştir.
References
- 1. Demirbas A. 2008. Heavy metal adsorption onto agro-based waste materials, A review. Journal of Hazardous Materials, 157, 220–229,
- 2. Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides, A review. Journal of Hazardous Materials, 211, 317– 331,
- 3. Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters, A review. Journal of Environmental Management, 92, 407-418,
- 4. Immamuglu M., Tekir O. 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228, 108-113,
- 5. Saka C., Sahin Ö., KÜÇÜK M.M. 2012. Application of agricultural and forest waste adsorbents for removal of lead (II) from contaminated water, International Journal of Environmental Science and Technology, 9, 379-394,
- 6. Ceyhan A.A., Şahin Ö., Baytar O.,, Saka C. 2013. Surface and porous characterization of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it's the adsorption of iodine, Journal of Analytical and Applied Pyrolysis, 104, 378-383,
- 7. Sahin Ö., Saka C., Ceyhan A. A., Baytar O. 2015. Preparation of High Surface Area Activated Carbon from Elaeagnus angustifolia Seeds by Chemical Activation with ZnCl2 in One-Step Treatment and its Iodine Adsorption, Separation Science and Technology, 50, 886–891,
- 8. Lagergren, S., Svenska, B.K. 1898. Zur Theorie der Sogenannten Adsorption Geloester Stoffe, Vetenskapsakad, Handl, 24, 1–39.
- 9. Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research, 34(3): 735–742.
- 10. Cagnon, B., Chedeville, O., Cherrier, J.F., Caqueret, V., Porte, C. 2011. Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: Comparison to the raw material, Journal of the Taiwan Institute of Chemical Engineers, 42(6), 996–1003.
- 11. Weber, W.J., Morris, J.C. 1963. Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div, 89 (2), 31–60.
- 12. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40 1361–1368.
- 13. Weber, T.W., 1974. Chakkravorti, R.K., Pore and solid diffusion models for fixedbed adsorbers, AIChE J. 20 228–238.
- 14. Freundlich, H.M.F. 1906. Over the adsorption in solution, J. Phys. Chem, 57, 385–470,
- 15. Temkin, M.I., Pyzhev, V. 1940. Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim, 12, 327–356
- 16. De Luna, M.D.G., Flores, E.D., Genuino, D.A.D., Futalan, C.M., Wan, M.W. 2013. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-Optimization, isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 44(4), 646–653.
- 17. Kumar K.V., Porkodi K., Rocha F., 2008. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions, J Hazard Mater, 151, 794.
- 18. Tan, I.W., Ahmad, L., Hameed, B.H. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154(1-3), 337–346.
- 19. Mouni, L., Merabet, D., Bouzaza, A., Belkhiri, L. 2011. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination, 276(1-3), 148–153.
- 20. Hamza, I. A A., Martincigh, B.S., Ngila, J.C. 2013. Nyamori, V.O., Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Physics and Chemistry of the Earth, 66, 157–166,
- 21. Nam, S.-W., Choi, D.-J., Kim, S.-K., Her, N., Zoh, K.-D. 2014. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, Journal of hazardous materials, 270, 144–152.
- 22. Noorimotlagh, Z., Darvishi Cheshmeh Soltani, R., Khataee, R., Shahriyar, S., Nourmoradi, H. 2014. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch, Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1783–1791.
- 23. Karaçetin, G., Sivrikaya, S., Imamoğlu, M. 2014. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, Journal of Analytical and Applied Pyrolysis, 110, 270–276.
- 24. Karaçetin, G., Sivrikaya, S., Imamoğlu, M. 2014. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, Journal of Analytical and Applied Pyrolysis, 110, 270–276.
- 25. Martín-González, M., González-Díaz, O., Susial, P., Araña, J., Herrera-Melián, J. A., Doña-Rodríguez, J.M., Pérez-Peña, J. 2014. Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase, Chemical Engineering Journal, 245, 348–358.
- 26. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wu, D. 2012. Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B: Biointerfaces, 90(1), 197–203,
- 27. Peydayesh, M., Rahbar-Kelishami, A. 2014. Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies, Journal of Industrial and Engineering Chemistry, 21, 1014–1019.
- 28. Ahmed, M.J., Dhedan, S.K. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons, Fluid Phase Equilibria, 317, 9–14.
- 29. Hameed, B.H., El-Khaiary, M.I. 2008. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies, Journal of Hazardous Materials, 154(1-3), 237–244.
- 30. Liu, Q.-S., Zheng, T., Wang, P., Guo, L. 2010. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Industrial Crops and Products, 31(2), 233–238,
Year 2018,
, 256 - 267, 28.12.2018
Orhan Baytar
,
Ayhan Abdullah Ceyhan
,
Ömer Şahin
References
- 1. Demirbas A. 2008. Heavy metal adsorption onto agro-based waste materials, A review. Journal of Hazardous Materials, 157, 220–229,
- 2. Hua M., Zhang S., Pan B., Zhang W., Lv L., Zhang Q. 2012. Heavy metal removal from water/wastewater by nanosized metal oxides, A review. Journal of Hazardous Materials, 211, 317– 331,
- 3. Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters, A review. Journal of Environmental Management, 92, 407-418,
- 4. Immamuglu M., Tekir O. 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228, 108-113,
- 5. Saka C., Sahin Ö., KÜÇÜK M.M. 2012. Application of agricultural and forest waste adsorbents for removal of lead (II) from contaminated water, International Journal of Environmental Science and Technology, 9, 379-394,
- 6. Ceyhan A.A., Şahin Ö., Baytar O.,, Saka C. 2013. Surface and porous characterization of activated carbon prepared from pyrolysis of biomass by two-stage procedure at low activation temperature and it's the adsorption of iodine, Journal of Analytical and Applied Pyrolysis, 104, 378-383,
- 7. Sahin Ö., Saka C., Ceyhan A. A., Baytar O. 2015. Preparation of High Surface Area Activated Carbon from Elaeagnus angustifolia Seeds by Chemical Activation with ZnCl2 in One-Step Treatment and its Iodine Adsorption, Separation Science and Technology, 50, 886–891,
- 8. Lagergren, S., Svenska, B.K. 1898. Zur Theorie der Sogenannten Adsorption Geloester Stoffe, Vetenskapsakad, Handl, 24, 1–39.
- 9. Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Research, 34(3): 735–742.
- 10. Cagnon, B., Chedeville, O., Cherrier, J.F., Caqueret, V., Porte, C. 2011. Evolution of adsorption kinetics and isotherms of gallic acid on an activated carbon oxidized by ozone: Comparison to the raw material, Journal of the Taiwan Institute of Chemical Engineers, 42(6), 996–1003.
- 11. Weber, W.J., Morris, J.C. 1963. Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div, 89 (2), 31–60.
- 12. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40 1361–1368.
- 13. Weber, T.W., 1974. Chakkravorti, R.K., Pore and solid diffusion models for fixedbed adsorbers, AIChE J. 20 228–238.
- 14. Freundlich, H.M.F. 1906. Over the adsorption in solution, J. Phys. Chem, 57, 385–470,
- 15. Temkin, M.I., Pyzhev, V. 1940. Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim, 12, 327–356
- 16. De Luna, M.D.G., Flores, E.D., Genuino, D.A.D., Futalan, C.M., Wan, M.W. 2013. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-Optimization, isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 44(4), 646–653.
- 17. Kumar K.V., Porkodi K., Rocha F., 2008. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions, J Hazard Mater, 151, 794.
- 18. Tan, I.W., Ahmad, L., Hameed, B.H. 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, Journal of Hazardous Materials, 154(1-3), 337–346.
- 19. Mouni, L., Merabet, D., Bouzaza, A., Belkhiri, L. 2011. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination, 276(1-3), 148–153.
- 20. Hamza, I. A A., Martincigh, B.S., Ngila, J.C. 2013. Nyamori, V.O., Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Physics and Chemistry of the Earth, 66, 157–166,
- 21. Nam, S.-W., Choi, D.-J., Kim, S.-K., Her, N., Zoh, K.-D. 2014. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, Journal of hazardous materials, 270, 144–152.
- 22. Noorimotlagh, Z., Darvishi Cheshmeh Soltani, R., Khataee, R., Shahriyar, S., Nourmoradi, H. 2014. Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch, Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1783–1791.
- 23. Karaçetin, G., Sivrikaya, S., Imamoğlu, M. 2014. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, Journal of Analytical and Applied Pyrolysis, 110, 270–276.
- 24. Karaçetin, G., Sivrikaya, S., Imamoğlu, M. 2014. Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, Journal of Analytical and Applied Pyrolysis, 110, 270–276.
- 25. Martín-González, M., González-Díaz, O., Susial, P., Araña, J., Herrera-Melián, J. A., Doña-Rodríguez, J.M., Pérez-Peña, J. 2014. Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase, Chemical Engineering Journal, 245, 348–358.
- 26. Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wu, D. 2012. Adsorption of methylene blue from aqueous solution by graphene, Colloids and Surfaces B: Biointerfaces, 90(1), 197–203,
- 27. Peydayesh, M., Rahbar-Kelishami, A. 2014. Adsorption of methylene blue onto Platanus orientalis leaf powder: Kinetic, equilibrium and thermodynamic studies, Journal of Industrial and Engineering Chemistry, 21, 1014–1019.
- 28. Ahmed, M.J., Dhedan, S.K. 2012. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons, Fluid Phase Equilibria, 317, 9–14.
- 29. Hameed, B.H., El-Khaiary, M.I. 2008. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies, Journal of Hazardous Materials, 154(1-3), 237–244.
- 30. Liu, Q.-S., Zheng, T., Wang, P., Guo, L. 2010. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation, Industrial Crops and Products, 31(2), 233–238,