Research Article
BibTex RIS Cite

Novel Over-Expanded Six-Stroke Engine Mechanism

Year 2018, , 320 - 338, 28.12.2018
https://doi.org/10.17798/bitlisfen.428198

Abstract

Some of the exhaust waste heat of the four-stroke
engines can be transformed into useful work in a variety of ways. With the
exhaust heat recovery from / of the six-stroke engine mechanisms, the goal is
to increase the thermal efficiency by converting the waste heat of useful work for
the engine. Despite the availability of many patents related to six-stroke
engines today more study and research are required to be used industrially. In
this study, instead of a conventional six-stroke engine, a variable-stroke
six-stroke engine mechanism was theoretically examined. An idealized
thermodynamic model of the novel mechanism was constructed, kinetic and dynamic
analyzes were made, and the design parameters were examined in comparison with
the conventional engine mechanism. As a result , compared to the conventional
six-stroke engine mechanism under the same conditions as this study , while the
engine torque was increased by 10% , whereas the load on the crankshaft
increased by only 1% .

References

  • 1. Feidt, M. (2017). Internal Combustion Engines Revisited. Finite Physical Dimensions Optimal Thermodynamics 1, Elsevier. p. 99-124. DOI:10.1016/B978-1-78548-232-8.50004-2.
  • 2. Reitz, R. D., Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, vol. 48, p. 45-51. DOI:10.1016/j.pecs.2014.05.003.
  • 3. Zhao, J. (2017). Research and application of over-expansion cycle (Atkinson and Miller) engines – A review. Applied Energy, vol. 185, p. 310-319. DOI:10.1016/j.apenergy.2016.10.063.
  • 4. Arabaci, E., İçingür, Y., (2016). Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine, Journal of the Energy Institute, vol. 89, p. 569-577. DOI:10.1016/j.joei.2015.06.006.
  • 5. Conklin, J. C., Szybist J. P., (2010). A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery, Energy v. 35, p.1658-1664. DOI:10.1016/j.energy.2009.12.012.
  • 6. Arabaci, E., İçingür Y., Solmaz, H., Uyumaz A., Yılmaz, E., (2015). Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine, Energy conversion and Management v. 98, p. 89-97. DOI:10.1016/j.enconman.2015.03.045.
  • 7. Szybist J. P., Conklin J. C., (2013). U.S. Patent No. US008291872B2. Washington, DC: U.S. Patent and Trademark Office.
  • 8. Postrzednik, S. (2014). Effects of the water injection into the hot charge at isochoric conditions, Energy v. 71: p. 17-20, DOI:10.1016/j.energy.2014.03.112
  • 9. Paul, G., et al. (2015). Droplet oscillation and pattern formation during Leidenfrost phenomenon." Experimental Thermal and Fluid Science v. 60, p. 346-353, DOI:10.1016/j.expthermflusci.2014.05.011.
  • 10. Kelem, H., & Kelem, E. (2010). U.S. Patent No. 7,726,268. Washington, DC: U.S. Patent and Trademark Office.
  • 11. Khalife, E., Tabatabaei, M., Demirbaş, A., Aghbashlo, M.. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science v. 59, p. 32-78. DOI:10.1016/j.pecs.2016.10.001.
  • 12. Liu, F., et al. (2014). Development of performance and combustion system of Atkinson cycle internal combustion engine. Science China Technological Sciences v. 57, p. 471-479. DOI: 10.1007/s11431-014-5474-8.
  • 13. Naber, J. D., Johnson, J. E. (2014). Internal combustion engine cycles and concepts. Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing. p. 197-224. DOI: 10.1533/9780857097422.2.197.
  • 14. Murtaza, G., Bhatti, A.I., Arshad, A. (2017). Nonlinear Robust Control of Atkinson Cycle Engine. IFAC-PapersOnLine v. 50, p. 3685-3690. DOI: 10.1016/j.ifacol.2017.08.562.
  • 15. Siczek, K. J. (2016). Valve train thermodynamic effects. Tribological Processes in the Valve Train Systems with Lightweight Valves, Butterworth-Heinemann, p. 39-58. DOI: 10.1016/B978-0-08-100956-7.00015-1
  • 16. Gleich, A. (2016). German Patent No: DE201510002385, Deutschland, German Patent and Trademark Office.
  • 17. CTL engine Mechanism, CTL-Engineering, from http://www.ctl-engineering.com, accessed on 2018-02-01.
  • 18. Catalano G., Compact And Modular Atkinson Cycle Engine, from https://contest.techbriefs.com/2016/entries/automotive-transportation/7029, accessed on 2018-03-20.
  • 19. Lugo Engine, from http://lugodevelopmentsinc.com, accessed on 2018-03-10.
  • 20. Guimaraes, B., UMotor - Over-Expanded Engine, from, https://contest.techbriefs.com/2016/entries/sustainable-technologies/7088, accessed on 2018-01-10.
  • 21. Waissi, G. R. (1995). Internal combustion (IC) engine with minimum number of moving parts. In SAE Technical Papers DOI: 10.4271/950090
  • 22. Read, T., (2009). U.S. Patent No. US8894530B1. Washington, DC: U.S. Patent and Trademark Office.
  • 23. Wiseman R., (2001). U.S. Patent No. US6510831B2. Washington, DC: U.S. Patent and Trademark Office.
  • 24. Caton, J. A. (2015). An introduction to thermodynamic cycle simulations for internal combustion engines, John Wiley & Sons.
  • 25. Çengel, Y. A., Boles, M. A. (2014). Thermodynamics: An engineering approach. Boston: McGraw-Hill Education.
  • 26. Honda Motor Corp. (1988). "Honda GX 240, GX270, GX340, GX390 Service and User Manual-part-a." 28-55.

Novel Over-Expanded Six-Stroke Engine Mechanism

Year 2018, , 320 - 338, 28.12.2018
https://doi.org/10.17798/bitlisfen.428198

Abstract

Dört
zamanlı motorların egzoz atık ısısının bir kısmı, çeşitli şekillerde faydalı
işlere dönüştürülebilir. Altı zamanlı motor mekanizmalarının egzoz ısısı geri
kazanımı ile amaç, motor için faydalı işlerin atık ısısını dönüştürerek ısıl
verimliliği arttırmaktır. Bugün altı zamanlı motorlarla ilgili birçok patentin
varlığına rağmen, endüstride daha fazla çalışma ve araştırma yapılması
gerekmektedir. Bu çalışmada, geleneksel altı zamanlı bir motor yerine, değişken
stroklu altı zamanlı bir motor mekanizması teorik olarak incelenmiştir. Yeni
mekanizmanın idealize edilmiş bir termodinamik modeli oluşturuldu, kinetik ve
dinamik analizler yapıldı ve tasarım parametreleri geleneksel motor
mekanizmasına göre incelendi. Sonuç olarak, bu çalışma ile aynı koşullar
altında geleneksel altı zamanlı motor mekanizmasına kıyasla, motor torku %10
artarken, krank milindeki yük yalnızca %1 artmıştır.

References

  • 1. Feidt, M. (2017). Internal Combustion Engines Revisited. Finite Physical Dimensions Optimal Thermodynamics 1, Elsevier. p. 99-124. DOI:10.1016/B978-1-78548-232-8.50004-2.
  • 2. Reitz, R. D., Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, vol. 48, p. 45-51. DOI:10.1016/j.pecs.2014.05.003.
  • 3. Zhao, J. (2017). Research and application of over-expansion cycle (Atkinson and Miller) engines – A review. Applied Energy, vol. 185, p. 310-319. DOI:10.1016/j.apenergy.2016.10.063.
  • 4. Arabaci, E., İçingür, Y., (2016). Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine, Journal of the Energy Institute, vol. 89, p. 569-577. DOI:10.1016/j.joei.2015.06.006.
  • 5. Conklin, J. C., Szybist J. P., (2010). A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery, Energy v. 35, p.1658-1664. DOI:10.1016/j.energy.2009.12.012.
  • 6. Arabaci, E., İçingür Y., Solmaz, H., Uyumaz A., Yılmaz, E., (2015). Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine, Energy conversion and Management v. 98, p. 89-97. DOI:10.1016/j.enconman.2015.03.045.
  • 7. Szybist J. P., Conklin J. C., (2013). U.S. Patent No. US008291872B2. Washington, DC: U.S. Patent and Trademark Office.
  • 8. Postrzednik, S. (2014). Effects of the water injection into the hot charge at isochoric conditions, Energy v. 71: p. 17-20, DOI:10.1016/j.energy.2014.03.112
  • 9. Paul, G., et al. (2015). Droplet oscillation and pattern formation during Leidenfrost phenomenon." Experimental Thermal and Fluid Science v. 60, p. 346-353, DOI:10.1016/j.expthermflusci.2014.05.011.
  • 10. Kelem, H., & Kelem, E. (2010). U.S. Patent No. 7,726,268. Washington, DC: U.S. Patent and Trademark Office.
  • 11. Khalife, E., Tabatabaei, M., Demirbaş, A., Aghbashlo, M.. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science v. 59, p. 32-78. DOI:10.1016/j.pecs.2016.10.001.
  • 12. Liu, F., et al. (2014). Development of performance and combustion system of Atkinson cycle internal combustion engine. Science China Technological Sciences v. 57, p. 471-479. DOI: 10.1007/s11431-014-5474-8.
  • 13. Naber, J. D., Johnson, J. E. (2014). Internal combustion engine cycles and concepts. Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing. p. 197-224. DOI: 10.1533/9780857097422.2.197.
  • 14. Murtaza, G., Bhatti, A.I., Arshad, A. (2017). Nonlinear Robust Control of Atkinson Cycle Engine. IFAC-PapersOnLine v. 50, p. 3685-3690. DOI: 10.1016/j.ifacol.2017.08.562.
  • 15. Siczek, K. J. (2016). Valve train thermodynamic effects. Tribological Processes in the Valve Train Systems with Lightweight Valves, Butterworth-Heinemann, p. 39-58. DOI: 10.1016/B978-0-08-100956-7.00015-1
  • 16. Gleich, A. (2016). German Patent No: DE201510002385, Deutschland, German Patent and Trademark Office.
  • 17. CTL engine Mechanism, CTL-Engineering, from http://www.ctl-engineering.com, accessed on 2018-02-01.
  • 18. Catalano G., Compact And Modular Atkinson Cycle Engine, from https://contest.techbriefs.com/2016/entries/automotive-transportation/7029, accessed on 2018-03-20.
  • 19. Lugo Engine, from http://lugodevelopmentsinc.com, accessed on 2018-03-10.
  • 20. Guimaraes, B., UMotor - Over-Expanded Engine, from, https://contest.techbriefs.com/2016/entries/sustainable-technologies/7088, accessed on 2018-01-10.
  • 21. Waissi, G. R. (1995). Internal combustion (IC) engine with minimum number of moving parts. In SAE Technical Papers DOI: 10.4271/950090
  • 22. Read, T., (2009). U.S. Patent No. US8894530B1. Washington, DC: U.S. Patent and Trademark Office.
  • 23. Wiseman R., (2001). U.S. Patent No. US6510831B2. Washington, DC: U.S. Patent and Trademark Office.
  • 24. Caton, J. A. (2015). An introduction to thermodynamic cycle simulations for internal combustion engines, John Wiley & Sons.
  • 25. Çengel, Y. A., Boles, M. A. (2014). Thermodynamics: An engineering approach. Boston: McGraw-Hill Education.
  • 26. Honda Motor Corp. (1988). "Honda GX 240, GX270, GX340, GX390 Service and User Manual-part-a." 28-55.
There are 26 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Emre Arabacı 0000-0002-6219-7246

Bayram Kılıç

Publication Date December 28, 2018
Submission Date May 29, 2018
Acceptance Date November 8, 2018
Published in Issue Year 2018

Cite

IEEE E. Arabacı and B. Kılıç, “Novel Over-Expanded Six-Stroke Engine Mechanism”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 320–338, 2018, doi: 10.17798/bitlisfen.428198.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr