Research Article
BibTex RIS Cite

Tek fazlı köprüsüz düşürücü GFD konvertörleri için PQ tabanlı yeni bir denetleyici

Year 2018, , 349 - 360, 28.12.2018
https://doi.org/10.17798/bitlisfen.428480

Abstract

Doğrusal olmayan yükler enerji sistemlerine bağlandıklarında şebekenin
güç kalitesini bozmaktadırlar. Bu yüzden enerji sistemlerinde güç faktörünün (GF)
yanı sıra toplam harmonik bozulmasınında (THB) iyileştirilmesi gerekmektedir.
Bu çalışmada enerji sistemlerinde THB'nin yanı sıra GF'yi geliştirmede
kullanılan tek faz köprüsüz düşürücü güç faktörü düzeltme (DGFD) konvertörleri
için PQ güç teorisine dayalı yeni bir denetleyici önerilmektedir. Köprüsüz DGFD
konvertörlerde, girişte bulunan köprü doğrultucu karmaşıklığı azaltmak ve genel
verimliliği artırmak için ortadan kaldırılmaktadır. Önerilen PQ tabanlı
denetleyicide referans akım sinyali anlık aktif ve reaktif güçler kullanılarak
elde edilmektedir. Elde edilen referans akım sinyali PWM anahtarlama
sinyallerini üretmek için akım kontrol döngüsünde kullanılmaktadır. Önerilen
denetleyicinin performansı 100W’lık DGFD konvertör için PSIM programı
kullanılarak doğrulanmıştır. Önerilen denetleyici geçici ve kararlı durum
performansına göre, tek fazlı sistemlerde THB ve GF'nin geliştirilmesi
açısından oldukça başarılı bulunmuştur.

References

  • 1. Bojoi R. I., Limongi L. R., Roiu D. and Tenconi A. 2011. Enhanced power quality control strategy for single-phase inverters in distributed generation systems, IEEE Trans. Power Electron., 26(3): 789 -806.
  • 2. He J., Li Y. W., Blaabjerg F. and Wang X. 2014. Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control, IEEE Trans. Power Electron., 29(2): 642 -653.
  • 3. Marei M I, El-Saadany E F, Salama M M A. 2002, Flexible distributed generation: (FDG), Power Engineering Society Summer Meeting, IEEE, 1:49-53.
  • 4. IEC 61000-3-2, 2010, Limits-Limits for Harmonic Current Emissions (Equipment Input Current ≤ 16 A per Phase), EMC Part 3-2.
  • 5. Ohnuma Y., and Itoh J. 2014. A novel single-phase buck PFC AC-DC converter with power decoupling capability using an active buffer, IEEE Trans. Ind. Appl., 50(3):1905-1914.
  • 6. Huber L., Gang L., and Jovanovi´c M. M. 2010. Design-Oriented analysis and performance evaluation of buck PFC front-end, IEEE Trans. Power Electron., 25(1):85–94.
  • 7. Fardoun A. A., Ismail E. H., Khraim N., Sabzali A. J., Al-Saffar M. A. 2014. Bridgeless High Power Factor Buck-Converter Operating in Discontinuous Capacitor Voltage Mode, IEEE Transactions on Industry Applications, 50(5):3457–3467.
  • 8. Hwu K. I., Shieh J. J. and Jiang W. Z. 2017. A new bridgeless buck PFC rectifier, Int. J. Circ. Theor. Appl., 45:707-719.
  • 9. Shin J. W., Cho B. H. 2012. Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier, IEEE Trans. Power Electron., 27(7):3363-3373.
  • 10. Chen B., Xie Y., Huang F., and Chen J. 2006. A novel single-phase buck PFC converter based on one-cycle control, in Proc. IEEE Power Electron. Motion Control Conf., pp1–5, Shanghai, China.
  • 11. Park J.H., Kim D.J. 2016. Predictive control algorithm including conduction-mode detection for PFC converter, IEEE Transactions On Industrial Electronics, 63(9):5900-5911.
  • 12. Yang S., Meng C., Chiu C., Chang C., Chen K., Lin Y., Lin S., and Tsai T. 2016. A buck power factor correction converter with predictive quadratic sinusoidal current modulation and line voltage reconstruction, IEEE Trans. Ind. Electron. 63(9):5912-5920.
  • 13. Marcos-Pastor A., Vidal-Idiarte E., Cid-pastor A., Martinez-Salamero L. 2016. Interleaved digital power factor correction based on the sliding-mode approach",IEEE Trans. Power Electron., 31(6): 4641-4653.
  • 14. Wang W., Lu D. D.-C. and Chu G. M.-L.2011. Digital control of bridgeless buck PFC converter in discontinuous-input-voltage-mode, Proc. Ann. Conf. IEEE Ind. Electro. Society, 1312-1317.
  • 15. Akagi H., Kanazawa Y., and Nabae A. 1984. Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Trans. Ind. Applicat., 20(3):625 -630.
  • 16. Khadkikar V., Chandra A. and Singh B. N. 2009. Generalised single-phase p-q theory for active power filtering: Simulation and DSP-based experimental investigation, IET Power Electron., 2(1):67-78.
  • 17. Xiong D., Yandong L., Guoning W., Pengju S., Heng Ming T. 2014. Estimation of Synchronization Signal Using Sinusoidal Amplitude Integrator in Synchronous Reference Frame, Energy Conversion Congress and Exposition (ECCE), pp4925-4931, Pittsburgh, PA, USA.
  • 18. Zeng; Z. Yang J.; Chen S.; Huang J. 2014. Reduced order generalized integrators based selective harmonic compensation current controller for shunt active power filters, Energy Conversion Congress and Exposition (ECCE), pp1650-1655, Pittsburgh, PA, USA.
  • 19. Soares V., Verdelho P. and Marques G. D. 2000. An instantaneous active and reactive current component method for active filters, IEEE Trans. Power Electron., 15(4):660-669.
  • 20. Grigore V. and Kyyr&auml J. 2000. High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode”, IEEE Trans. Power Electron., 15(6):1241-1249.
  • 21. Kurian N. S., Mohan F. 2014. Performance Evaluation of Bridgeless High Power factor Buck Front End, International Journal of Engineering Research & Technology, 3(4):224-227.
  • 22. Jang Y. and Jovanovicacute M. M. 2011. Bridgeless high-power-factor buck converter, IEEE Trans. Power Electron., 26(2):602-611.
  • 23. Mohan N., Undeland T. and Robbins W. 1995. Power Electronics: Converters, Applications and Design, Hoboken, NJ. Wiley.
  • 24. Texas Instruments Power Supply Design Seminar. 2010. Design Reviews–Functional Circuit Blocks. Specific Power Topologies, TI Literature Number:SLUP264.

A new controller based on PQ for single phase bridgeless buck PFC converters

Year 2018, , 349 - 360, 28.12.2018
https://doi.org/10.17798/bitlisfen.428480

Abstract



The abstract
of the manuscript will write this section as English.
When nonlinear loads are connected to energy systems,
they decrease the power quality of the grid. Therefore, There is a need to
improve the total harmonic distortion (THD) as well as the power factor (PF).
In this study, a new controller based on PQ power theory is presented for
single-phase bridgeless buck power factor correction (DPFC) converters to
improve the THD as well as the PF of the energy systems. In bridgeless BPFC
converters, the input bridge rectifier is removed to reduce complexity and
increase overall efficiency. In the proposed PQ based controller, the reference
current signal is obtained by using the active and reactive powers. The
reference current signal is used in the current control loop to generate PWM
switching signals. The performance of the proposed controller is verified using
the PSIM circuit simulation for a 100W BPFC converter. The proposed controller
is found to be quite successful in terms of the improvement of THD and PF in
single phase systems according to the transient and steady state performance.



References

  • 1. Bojoi R. I., Limongi L. R., Roiu D. and Tenconi A. 2011. Enhanced power quality control strategy for single-phase inverters in distributed generation systems, IEEE Trans. Power Electron., 26(3): 789 -806.
  • 2. He J., Li Y. W., Blaabjerg F. and Wang X. 2014. Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control, IEEE Trans. Power Electron., 29(2): 642 -653.
  • 3. Marei M I, El-Saadany E F, Salama M M A. 2002, Flexible distributed generation: (FDG), Power Engineering Society Summer Meeting, IEEE, 1:49-53.
  • 4. IEC 61000-3-2, 2010, Limits-Limits for Harmonic Current Emissions (Equipment Input Current ≤ 16 A per Phase), EMC Part 3-2.
  • 5. Ohnuma Y., and Itoh J. 2014. A novel single-phase buck PFC AC-DC converter with power decoupling capability using an active buffer, IEEE Trans. Ind. Appl., 50(3):1905-1914.
  • 6. Huber L., Gang L., and Jovanovi´c M. M. 2010. Design-Oriented analysis and performance evaluation of buck PFC front-end, IEEE Trans. Power Electron., 25(1):85–94.
  • 7. Fardoun A. A., Ismail E. H., Khraim N., Sabzali A. J., Al-Saffar M. A. 2014. Bridgeless High Power Factor Buck-Converter Operating in Discontinuous Capacitor Voltage Mode, IEEE Transactions on Industry Applications, 50(5):3457–3467.
  • 8. Hwu K. I., Shieh J. J. and Jiang W. Z. 2017. A new bridgeless buck PFC rectifier, Int. J. Circ. Theor. Appl., 45:707-719.
  • 9. Shin J. W., Cho B. H. 2012. Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier, IEEE Trans. Power Electron., 27(7):3363-3373.
  • 10. Chen B., Xie Y., Huang F., and Chen J. 2006. A novel single-phase buck PFC converter based on one-cycle control, in Proc. IEEE Power Electron. Motion Control Conf., pp1–5, Shanghai, China.
  • 11. Park J.H., Kim D.J. 2016. Predictive control algorithm including conduction-mode detection for PFC converter, IEEE Transactions On Industrial Electronics, 63(9):5900-5911.
  • 12. Yang S., Meng C., Chiu C., Chang C., Chen K., Lin Y., Lin S., and Tsai T. 2016. A buck power factor correction converter with predictive quadratic sinusoidal current modulation and line voltage reconstruction, IEEE Trans. Ind. Electron. 63(9):5912-5920.
  • 13. Marcos-Pastor A., Vidal-Idiarte E., Cid-pastor A., Martinez-Salamero L. 2016. Interleaved digital power factor correction based on the sliding-mode approach",IEEE Trans. Power Electron., 31(6): 4641-4653.
  • 14. Wang W., Lu D. D.-C. and Chu G. M.-L.2011. Digital control of bridgeless buck PFC converter in discontinuous-input-voltage-mode, Proc. Ann. Conf. IEEE Ind. Electro. Society, 1312-1317.
  • 15. Akagi H., Kanazawa Y., and Nabae A. 1984. Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Trans. Ind. Applicat., 20(3):625 -630.
  • 16. Khadkikar V., Chandra A. and Singh B. N. 2009. Generalised single-phase p-q theory for active power filtering: Simulation and DSP-based experimental investigation, IET Power Electron., 2(1):67-78.
  • 17. Xiong D., Yandong L., Guoning W., Pengju S., Heng Ming T. 2014. Estimation of Synchronization Signal Using Sinusoidal Amplitude Integrator in Synchronous Reference Frame, Energy Conversion Congress and Exposition (ECCE), pp4925-4931, Pittsburgh, PA, USA.
  • 18. Zeng; Z. Yang J.; Chen S.; Huang J. 2014. Reduced order generalized integrators based selective harmonic compensation current controller for shunt active power filters, Energy Conversion Congress and Exposition (ECCE), pp1650-1655, Pittsburgh, PA, USA.
  • 19. Soares V., Verdelho P. and Marques G. D. 2000. An instantaneous active and reactive current component method for active filters, IEEE Trans. Power Electron., 15(4):660-669.
  • 20. Grigore V. and Kyyr&auml J. 2000. High power factor rectifier based on buck converter operating in discontinuous capacitor voltage mode”, IEEE Trans. Power Electron., 15(6):1241-1249.
  • 21. Kurian N. S., Mohan F. 2014. Performance Evaluation of Bridgeless High Power factor Buck Front End, International Journal of Engineering Research & Technology, 3(4):224-227.
  • 22. Jang Y. and Jovanovicacute M. M. 2011. Bridgeless high-power-factor buck converter, IEEE Trans. Power Electron., 26(2):602-611.
  • 23. Mohan N., Undeland T. and Robbins W. 1995. Power Electronics: Converters, Applications and Design, Hoboken, NJ. Wiley.
  • 24. Texas Instruments Power Supply Design Seminar. 2010. Design Reviews–Functional Circuit Blocks. Specific Power Topologies, TI Literature Number:SLUP264.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Yasemin Önal 0000-0003-0173-0948

Publication Date December 28, 2018
Submission Date May 30, 2018
Acceptance Date December 26, 2018
Published in Issue Year 2018

Cite

IEEE Y. Önal, “Tek fazlı köprüsüz düşürücü GFD konvertörleri için PQ tabanlı yeni bir denetleyici”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 349–360, 2018, doi: 10.17798/bitlisfen.428480.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr