Review
BibTex RIS Cite

Şarj Edilebilir Nikel-Metal Hidrür (Ni-MH) Pillerinde Kullanılan Hidrojen Depolama Alaşımlarındaki Son Gelişmeler

Year 2018, , 454 - 472, 28.12.2018
https://doi.org/10.17798/bitlisfen.431673

Abstract

Hidrojen depolama alaşımları şarj edilebilir Ni-MH
pillerinin pratik uygulamaları için son zamanların çok geniş araştırma konusunu
oluşturmaktadır. Bu derleme çalışmasında şarj edilebilir Ni-MH pilleri için
AB5-tip, AB2-tip, TiV esaslı, R-Mg-Ni esaslı ve Mg-Ni esaslı hidrojen depolama
alaşımlarının son yıllardaki gelişmeleri detaylı olarak anlatılmıştır. Son
yıllarda gerçekleşen gelişmelere bağlı olarak var olan problemler ve ilgili sonuçlar
sistematik olarak değerlendirilmiştir. Hidrojen depolama alaşımlarının, alaşım
kompozisyonları, kristal yapıları ve elektrokimyasal özellikleri arasındaki
bağlantı her bir alaşım çeşidi için tanımlanmış ve güç pilleri üzerinden analiz
edilmiştir. Gelişen elektrikli araçlarda kullanımları için Ni-MH pillerindeki
zorluklar bu çalışmada tartışılmıştır.

References

  • 1. Zhang Y.H.,Jia Z.C., Yuan Z.M., Yang T., Qi Y., Zhao D.L. 2015. Development and Application of Hydrogen Storage, International Journal of Iron and Steel, 22(9):757-770.
  • 2. Lim K.L.,Kazemian H., Yaakob Z., Daud W. R. W. 2010. Solid-stateMaterialsandMethodsforHydrogen Storage : A Critacal Review, Chemica lEngineeringTechnology 33(2): 213-226,
  • 3. Jain I.P. 2009. Hydrogen the fuel for 21st century, International Journal of Hydrogen Energy, 34: 7368-7378.
  • 4. Aardahl C.L., Rassat S.D. 2009. Overview of systems considerations for on-board chemical hydrogen storage, International Journal of Hydrogen Energy, 34: 6676-6683.
  • 5. Corgnale C., Motyka T., Greenway S. 2013. Metal hydride bed system model for renewable source driven Regenerative Fuel Cell, Journal of Alloys and Compounds, 580: 406-409.
  • 6. Wang H., Lin H.J., Cai W.T., Ouayang L.Z., Zhu M. 2016. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – A review of recent progress, Journal of Alloys and Compounds, 658: 280-300.
  • 7. Zacharia R., Rather S.U. 2015. Review of Solid StateHydrogen Storage MethodsAdoptingDifferentKinds of Novel Materials, Hindawi Publishing Corporation, Journal of Nanomaterials, 18
  • 8. Chilev C.,Darkrim L. F. 2016. Hydrogen storage at lowtemperatureandhighpressureforapplication in automobile manufacturing , International Journal of Hydrogen Energy, 41: 1744-1758.
  • 9. Sakintuna B., Lamari-Darkrim F., Hirscher M. 2007. ‘Metal hydridematerialsforsolidhydrogen storage: A review, International Journal of Hydrogen Energy, 32: 1121-1140.
  • 10. Ouyang L., Huang J., Wang H., Liu J., Zhu M. 2017. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review, Journal of Materials Chemistry, 200: 164-178.
  • 11. Kleperis J.,Wojcik G., Czerwinski A., Skowronski J., KopczykM. 2001. Beltowska-Brzezinska M., ‘Electrochemical behavior of metal hydrides, Journal of Solid State Electrochemistry, 5: 229-249.
  • 12. Liu Y.,Cao Y., Hongge P., Gao M., Wang Q. 2011. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, Journal of Materials Chemistry, 21: 4743-4755.
  • 13. Feng F., Geng M., Northwood D.O. 2001. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni-metal hydride (MH) batteries: a review, International Journal of HydrogenEnergy, 26: 725–734.
  • 14. Cuevas F., Joubert J.M., Latroche M. 2001. Intermetallic compounds as negative electrodes of Ni/MH batteries, Applied Physics A Materials, 72: 225-238.
  • 15. Liu Y., Cao Y., Huang L., Gao M., Hongge P. 2011. Rareearth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries, Journal of Alloysa and Compounds 509: 675- 686.
  • 16. Hong K. 2001. The development of hydrogen storage alloys and the progress of nickel hydride batteries, Journal of Alloys and Compounds, 321: 307–313.
  • 17. Tliha M., Khaldi C., Boussami S., Fenineche N., El-Kedim O., Mathlouthi H., Lamloumi J. 2014. Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: a review, 18: 577-593.
  • 18. Notten P.H.L., Latroche M. 2009.Secondary Batteries: Nickel–Metal Hydride: Metal Hydrides, Encyclopedia of Electrochemical Power Source, Amsterdam: Elsevier, 4: 502-521.
  • 19. Ratnakumart B. V., Witbam C., Bowman R. C., HightowerJr., A., Fultz B. 1996. Electrochemical Studies on LaNi5-xSnx Metal Hydride Alloys, Journal of The Electrochemical Society, 143(8): 2578-2583.
  • 20. Han J.I., Lee J.-Y. 1989. Hydridingkinetics of LaNi5 and LaNi4,7Al0,3, International HydrogenEnergy, 14(3):181-186.
  • 21. Balogun M.-S., Wang Z.-M., Chen H.-X,Deng J.-Q, Yao Q.-R., Zhou H.-Y. 2013. Effect of Al content on structure and Electrochemical properties of LaNi4.4- xCo0.3Mn0.3Alx hydrogen storage alloys, International Journal of Hydrogen Energy, 38: 10926-10931.
  • 22. Liu J., Yang Y., Yu P., Li Y., Shao H. 2006. Electrochemical characterization of LaNi5−xAlx (x = 0.1–0.5) in the absence of additives, Journal of Power Sources, 161:1435-1442.
  • 23. Zhang W. 1993. Cimato J., Goudy A. J., ‘The hydriding and dehydriding kinetics of some LaNi5-xAlxalloys, Journal of Alloys and Compounds, 201: 175-179.
  • 24. Willems J.J.G., Buchow K.H.J. 1987.From Permanent Magnets to Rechargeable Hydride Electrodes, Journal of theLess-CommonMetals, 129: 13-30.
  • 25. Sakai T., Oguro K., Miyamura H., Kuriyama N., Kato A., Ishikawa H. 1990. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries, Journal of theLess-Common Metals, 161: 193-202.
  • 26. Asano K., Yamazaki Y. , IijimaY. 2003.Hydriding and dehydriding processes of LaNi5-xCox (x=0–2) alloys under hydrogen pressure of 1–5 MPa, Intermetallics 11: 911–916.
  • 27. Ming Q., Shuhui L., Peilin Q., Zhiqiang L., Jin G. 2011. The influence of Cocontent on LaNi3.2-xMn03Cox(x=0.2~0.8) Alloy Hydrogen Storage and Electrochemical Properties, 2011 International Conference on PhysicsScienceandTechnology (ICPST 2011), Physics Procedia 22: 577-583.
  • 28. Pandey S.K., Srivastava A., Srivastava O.N. 2007. Improvement in hydrogen storage capacity in LaNi5 through substitution of Ni by Fe, International Journal of Hydrogen Energy, 32: 2461-2465.
  • 29. Young K., Ouchi T., Reichman B., Koch J.,. Fetcenko M.A. 2011. Improvement in the low-temperature performance of AB5 metal hydride alloys by Fe-addition, Journal of Alloys and Compounds, 509: 7611–7617.
  • 30. Young K.-H., Nei J. 2013. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6: 4574-4608.
  • 31. Liu J., Yang Y., Li Y., Yu P., He Y., Shao H. 2007. Comparative study of LaNi4.7M0.3 (M=Ni, Co, Mn, Al) by powder micro electrode technique, International Journal of Hydrogen Energy, 32: 1905 – 1910.
  • 32. Li S.L., Wang P., Chen W., Luo G., Han X.B., Chen D.M., Yang K. 2010. Study on hydrogen storage properties of LaNi3.8Al1.2-xMnx alloys, International Journal of Hydrogen Energy, 35: 12391-12397.
  • 33. Borzone E.M., Blanco M.V., Baruj A., Meyer G.O. 2014. Stability of LaNi5-xSnx cycled in hydrogen, International Journal of HydrogenEnergy, 39: 8791-8796.
  • 34. Ratnakumar B.V., Witbam C., Bowman R.C., Hightower Jr.-A., Fultz B .1996. Electrochemical Studies on LaNi5-xSnx Metal HydrideAlloys, Journal of The Electrochemical Society, 143(8):2578-2584.
  • 35. Srivastava S., Srivastava O.N. 1998. Investigations on synthesis, characterization and hydrogenation behaviour of the spin- and thermal-melted versions of LaNi5-xSix (x=0.1, 0.3, 0.5) hydrogen storage materials, Journal of Alloys and Compounds, 267:240–245.
  • 36. Adzic G.D., Johnson J.R., Reilly J.J., McBreen J., Mukerjee S., Kumar M.P.S., Zhang W., Srinivasan S. 1995. Cerium Content and Cycle Life of Multi component AB5 Hydride Electrodes, Journal of The Electrochemical Society, 142(10): 3429-3433.
  • 37. Chen J. ,Dou S.X., Liu H.K. 1996. Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes’, Journal of PowerSources, 63: 267-270.
  • 38. AdzicG.D., JohnsonJ.R., MukerjeeS., McBreenJ., ReillyJ.J. 1997. Function of cobalt in AB5Hx electrodes, Journal of Alloys and Compounds, 253–254: 579–582.
  • 39. Hu W.-K. 1998. Effect of microstructure, composition and non-stoichiometry on electrochemical properties of low-Co rare-earth nickel hydrogen storage alloys, Journal of Alloys and Compounds, 279: 295–300.
  • 40. Zhang X., Chai Y., Yin W., and Zhao M. 2004.Crystal structure and electrochemical properties of rare earthnon-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery, Journal of Solid State Chemistry ,177: 2373–2377.
  • 41. Zhang Y.-H., Chen M.-Y., Wang X.-L., Wang G.-Q, Lin Y.-F., Qi Y., ‘Effect of boron additive on the cycle life of low-Co AB5-type electrode consisting of alloy prepared by cast and rapid quenching’, Journal of Power Sources, 125, 273–279, 2004
  • 42. Tang R., Zhang Z., Liu L., Liu Y., Zhu J., Yu G. 2004. Study on a low-cobalt Ml0.8Mg0.2Ni3.2Co0.3Al0.3 alloy, International Journal of Hydrogen Energy, 29: 851 – 858.43. Young K., Chao B., Huang B., Nei J. 2014. Studies on the hydrogen storage characteristic of La1-xCex(NiCoMnAlCuSiZr)5.7 with a B2 secondary phase,Journal of Alloys and Compounds, 585: 760–770.
  • 44. Yao Q., Tang Y., Zhou H., Deng J., Wang Z., Pan S., Rao G., Zhu Q. 2014. Effect of rapid solidification treatment on structure and Electrochemical performance of low-Co AB5-type hydrogen storage alloy, Journal of Rare Earths, 32(6): 526-531.
  • 45. Wei G., Han S., Danyang X., Yuan L., Ming L., Lirong M., Lin H. 2006. Phase Structure and Electrochemical Characteristics of Ml(Ni3.55Co0.75Mn0.40Al0.30)5x (x = 0.88, 0.92, 0.96, 1.00) Hydrogen Storage Alloys, Journal of Rare Earths 24: 227-231.
  • 46. Jiang L., Zhan F., Bao D., Qing G., Li Y., Wei X. 1995. Low cost AB5-type hydrogen storage alloys for a nickel-metal hydride battery, Journal of Alloys and Compounds 231: 635-638.
  • 47. Iwakura C., Ikoma K., Nohara S., Furukawa N., Inoue H. 2005. Capacity Retention Characteristics of Nickel-Metal HydrideBatteries with Polymer Hydrogel Electrolyte, Electrochemical and Solid-State Letters, 8(1): A45-A47.
  • 48. Ming Q., Shuhui L., Peilin Q., Zhiqiang L., Jin G. 2011. The influence of Co content on LaNi3.2-xMn0.3Cox (x=0.2~0.8)Alloy Hydrogen Storage and Electrochemical Properties, Physics Procedia, 22: 577-583.
  • 49. Ozaki T.,Yang H.-B., Iwaki T., Tanase S., Sakai T., Fukunaga H., Matsumoto N., Katayama Y., Tanaka T., Kishimoto T., Kuzuhara M. 2006. Development of Mg-containing MmNi5-based alloys for low-cost and high-power Ni–MH battery, Journal of Alloys and Compounds, 408–412: 294-300.
  • 50. ReillyJ.J., Adzic G.D., Johnson J.R., Vogt T., Mukerjee S., McBreen J. 1990. The correlation between composition and electrochemical properties of metal hydride electrodes, Journal of Alloys and Compounds, 293–295(20): 569-582.
  • 51. Nakano H., WakaoS. 1995. Substitution effect of elements in Zr-based alloys with Laves phase for nickel-hydride battery, Journal of Alloys and Compounds, 231: 587-593.
  • 52. Ulmer U., Dieterich M., Pohl A., Dittmeyer R., Linder M., Fichtner M., 2017. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys, International Journal of Hydrogen Energy, 42(31): 20103-20110.
  • 53. Balcerzak M. 2017. Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys, International Journal of Hydrogen Energy, 42(37): 23698-23707.
  • 54. Liu W., Kawabe Y., Liang F., Okuyama R., Lin J., Wang L. 2013. A composite based on Fe substituted TiVNi alloy: Synthesis, structure and electrochemical hydrogen storage property, Intermetallics 34: 18-22.
  • 55. Liu Y.F. , Zhang S.S., Li R., Gao M.X., Zhong K., Miao H. 2008. Electrochemical performances of the Pd-added Ti–V-basedhydrogen storage alloys. International Journal of Hydrogen Energy, 33: 728–734.
  • 56. Miao H., Gao M.X., Liu Y.F., Lin Y., Wang J.H., Pan H.G. 2007. Microstructure and electrochemical properties of Ti–V-based multi phase hydrogen storage electrode alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8-xNi1.25Fex (x= 0.0–0.8), International Journal of Hydrogen Energy, 32: 3947–3953.
  • 57. Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T. 2008. Vanadium-based solid solution alloys with three dimensional network structure for high capacity metalhydride electrodes, Journal of Alloys and Compounds, 253-254: 583–586.
  • 58. Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T. 1996. V-based solid solution alloys with Laves phase network: hydrogen absorption properties and microstructure, Journal of Alloys and Compounds, 236: 151–155.
  • 59. Tsukahara M., Takahashi K., Mishima T., Sakai T., Miyamura H., Kuriyama N. 1995. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0  x 0.75), Journal of Alloys and Compounds, 226: 203–207.
  • 60. Pan H.G.,Zhu Y.F., Gao M.X., Wang Q.D. 2002. Investigation of thestructural and electrochemical properties ofsuperstoichiometric Ti–Zr–V–Mn–Cr–Ni hydrogen storage alloys, Journal of The Electrochemical Society, 149(7): A829–833.
  • 61. Yu X.B., Wu Z., Xia B.J., Xu N.X. 2005. Electrochemical performance of ball-milled Ti–V-based electrode alloy, International Journal of Hydrogen Energy 30: 273 – 277.
  • 62. Pan H., Li R., Gao M., Liu Y., Lei Y., Wang Q. 2006. Effects of Ni on the structural and electrochemical properties ofTi–V-based hydrogen storage alloys, International Journal of Hydrogen Energy, 31:1188 – 1195.
  • 63. 63. Challet S., Latroche M., Heurtaux F. 2007. Hydrogenation properties and crystal structure of the single BCC(Ti0.355V0.645)100−xMx alloys with M = Mn, Fe, Co, Ni (x = 7, 14 and 21), Journal of Alloys and Compounds, 439:294–301.
  • 64. Ma P., Wu E., Li W. 2014. Hydrogen storage properties and microstructures of Ti0.7Zr0.3(Mn1−xVx)2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloy, International Journal of Hydrogen Energy, 39(25): 13569-13575.
  • 65. Mazzolai G. 2008. Some physical aspects of hydrogen behaviour in the H-Storage bcc alloys Ti35VxCr65−x, Ti40VxMn50−xCr10 and TixCr97.5−xMo2.5, International Journal of Hydrogen Energy, 33(23): 7116-7121.
  • 66. Kumara S., Singh P.K., Kojima Y., Kain V. 2018. Cyclic hydrogen storage properties of V-Ti-Cr-Al alloy, International Journal of Hydrogen Energy, 43(14): 7069-7101.
  • 67. Gao M., Miao H., Zhao Y., Liu Y., Pan H. 2009. Effects of rare earth elements substitution for Ti on the structure and electrochemical properties of a Fe-doped Ti–V-based hydrogen storage alloy, Journal of Alloys and Compounds, 484(1–2): 249-255.
  • 68. Zhang X., Sun D., Yin W., Chai Y., Zhao M. 2006. Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5 − x(Al0.5Mo0.5)x (x = 0–0.8) hydrogen storage alloys, Journal of Power Sources, 154: 290–297.
  • 69. Xiao L., Wang Y., Liu Y., Song D., Jiao L., Yuan H. 2008. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen storage alloy, International Journal of Hydrogen Energy, 33: 3925– 3929.
  • 70. Shi S., Li C., Tang W. 2009. Crystallographic and electrochemical performances of La–Mg–Ni–Al–Mo-basedalloys as anode materials for nickel–metal hydride batteries, Journal of Alloys and Compounds, 476: 874–877.
  • 71. Zhang Y.-H., Dong X.-P., Wang G.-Q., Guo S.-H., Ren J.-Y., Wang X.-L. 2007. Effect of boron additive on electrochemical cycling life of La–Mg–Ni alloyscprepared by casting and rapid quenching, International Journal of Hydrogen Energy 32: 594 – 599.
  • 72. Wang X.-L., Zhang Y.-H., Zhao D.-L., Dong X.-P., Guo S.-H., Wang G.-Q. 2007. Effects of Cr addition on the microstructures and Electrochemical performances of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy,Journal of Alloys and Compounds, 446–447: 625–629.
  • 73. Zhang Y.-H., Li B.-W., Ren H.-P., Cai Y., Dong X.-P., Wang X.-L. 2007. Effects of substituting Ni with Cu on the microstructures and Electrochemical characteristics of the as-cast andquenched La0.7Mg0.3Ni2.55−xCo0.45Cux(x =0.0.4) electrode alloys, International Journal of Hydrogen Energy, 32: 3420 – 3426.
  • 74. Kadir K., Sakai T., Uehara I. 1997. Synthesis and structure determination of a new series of hydrogen storagealloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layers alternating with AB5 layer’, Journal of Alloys and Compounds, 257: 115-121.
  • 75. Kadir K., Sakai T., Uehara I. 1999. Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5 )(MgCa)Ni9 : new phases in the AB2C9 system isostructural with LaMg2Ni9,Journal of Alloys and Compounds, 287: 264–270.
  • 76. Chu H.-L., Qiu S.-J., Sun L.-X., Zhang Y., Xu F., Jiang T., Li W.-X., Zhu M., Hu W.-Y. 2007. The improved electrochemical properties of novel La–Mg–Ni-basedhydrogen storage composites, Electrochimica Acta, 52: 6700–6706.
  • 77. Zhu M., Peng C.H., Ouyang L.Z., Tong Y.Q. 2006. The effect of nanocrystalline formation on the hydrogen storageproperties of AB3-base Ml–Mg–Ni multi-phase alloys, Journal of Alloys and Compound,s 426: 316–321.
  • 78. Qi Y.-N., Xu F., Chu H.-L., Sun L.-X., Jiang T., Zhu M. 2007. The electrochemical properties of AB3/polyaniline composites, International Journal of Hydrogen Energy, 32: 4894 – 4899.
  • 79. Binal Aybar A., Anik M. 2017.Direct synthesis of La-Mg-Ni-Co type hydrogen storage alloys from oxide mixtures, Journal of Energy Chemistry, 26(4): 719-723.
  • 80. Anik M., Binal Aybar A., Küçükdeveci N., Erken H., Baksan B., Gaşan H., Hatirnaz N.B., Lökçü E. 2015. Synthesis of La2Ni7 hydrogen storage alloy by the electro-deoxidation technique, International Journal of Hydrogen Energy, 40(5): 2248-2254.
  • 81. Chen J., KuriyamaN., Takeshita H. T., Tanaka H., Sakai T., Haruta M. 2000. Hydrogen Storage Alloys with PuNi3-Type Structureas Metal Hydride Electrodes, Electrochemical and Solid-State Letters, 3(6): 249-252.
  • 82. Zhang, F.L. Luo Y.C., Sun K., Wang D.H., Yan R.X., Kang L., Chen J.H. 2006. Structure and electrochemical properties of La2−xMgxNi7.0 (x = 0.3–0.6) hydrogen storage alloys, Journal of Alloys and Compounds, 424: 218–224.
  • 83. Pan H.G., Liu Y.F.,. Gao M.X, Zhu Y.F., Lei Y.Q., Wang Q.D. 2003. A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes, International Journal of Hydrogen Energy, 28(1):113–117.
  • 84. Vermeulen P.,.Niessen R.A.H, Nottena P.H.L. 2006. Hydrogen storage in metastable MgyTi(1 − y) thin films’, Electrochemistry Communications, 8(1): 27-32.
  • 85. Huang H.X., Huang K.L., Liu S.Q., Chen D.Y. 2010. Microstructures and electrochemical properties of Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) hydrogen storage alloys, Powder Technology, 198(1): 144-148.
  • 86. Selvam P., Viswanathan B., Swamy C.S., Srinivasan V. 1986. Magnesium and magnesium alloy hydrides, International Journal of Hydrogen Energy, 11(3): 169-192.
  • 87. Cui N., Luan B., Liu H.K., Zhao H.J., Dou S.X. 1995. Characteristics of magnesium-based hydrogen-storage alloy electrodes, Journal of Power Sources, 55(2): 263-267.
  • 88. Anık M. 2010. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying, Journal of Alloys and Compounds, 491(1–2): 565-570.
  • 89. Anık M., Karanfil F, Küçükdeveci N. 2012. Development of the high performance magnesium based hydrogen storage alloy, International Journal of Hydrogen Energy, 37(1): 299-308.
  • 90. NiessenaR. A. H. and Nottena P. H. L. 2005. Electrochemical Hydrogen Storage Characteristics of Thin Film MgX, X = Sc, Ti, V, Cr… Compounds,Electrochemical and Solid-State Letters, 8(10): A534-A538.
  • 91. KalisvaartW.P., NiessenR.A.H., and Notten P.H.L. 2006. Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials,Journal of Alloys and Compounds,417(1-2):280-291.
  • 92. Luo J.L., Cui N., He P. 1999. Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials, Electrochimica Acta, 44: 3549-3558.
Year 2018, , 454 - 472, 28.12.2018
https://doi.org/10.17798/bitlisfen.431673

Abstract

References

  • 1. Zhang Y.H.,Jia Z.C., Yuan Z.M., Yang T., Qi Y., Zhao D.L. 2015. Development and Application of Hydrogen Storage, International Journal of Iron and Steel, 22(9):757-770.
  • 2. Lim K.L.,Kazemian H., Yaakob Z., Daud W. R. W. 2010. Solid-stateMaterialsandMethodsforHydrogen Storage : A Critacal Review, Chemica lEngineeringTechnology 33(2): 213-226,
  • 3. Jain I.P. 2009. Hydrogen the fuel for 21st century, International Journal of Hydrogen Energy, 34: 7368-7378.
  • 4. Aardahl C.L., Rassat S.D. 2009. Overview of systems considerations for on-board chemical hydrogen storage, International Journal of Hydrogen Energy, 34: 6676-6683.
  • 5. Corgnale C., Motyka T., Greenway S. 2013. Metal hydride bed system model for renewable source driven Regenerative Fuel Cell, Journal of Alloys and Compounds, 580: 406-409.
  • 6. Wang H., Lin H.J., Cai W.T., Ouayang L.Z., Zhu M. 2016. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – A review of recent progress, Journal of Alloys and Compounds, 658: 280-300.
  • 7. Zacharia R., Rather S.U. 2015. Review of Solid StateHydrogen Storage MethodsAdoptingDifferentKinds of Novel Materials, Hindawi Publishing Corporation, Journal of Nanomaterials, 18
  • 8. Chilev C.,Darkrim L. F. 2016. Hydrogen storage at lowtemperatureandhighpressureforapplication in automobile manufacturing , International Journal of Hydrogen Energy, 41: 1744-1758.
  • 9. Sakintuna B., Lamari-Darkrim F., Hirscher M. 2007. ‘Metal hydridematerialsforsolidhydrogen storage: A review, International Journal of Hydrogen Energy, 32: 1121-1140.
  • 10. Ouyang L., Huang J., Wang H., Liu J., Zhu M. 2017. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review, Journal of Materials Chemistry, 200: 164-178.
  • 11. Kleperis J.,Wojcik G., Czerwinski A., Skowronski J., KopczykM. 2001. Beltowska-Brzezinska M., ‘Electrochemical behavior of metal hydrides, Journal of Solid State Electrochemistry, 5: 229-249.
  • 12. Liu Y.,Cao Y., Hongge P., Gao M., Wang Q. 2011. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, Journal of Materials Chemistry, 21: 4743-4755.
  • 13. Feng F., Geng M., Northwood D.O. 2001. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni-metal hydride (MH) batteries: a review, International Journal of HydrogenEnergy, 26: 725–734.
  • 14. Cuevas F., Joubert J.M., Latroche M. 2001. Intermetallic compounds as negative electrodes of Ni/MH batteries, Applied Physics A Materials, 72: 225-238.
  • 15. Liu Y., Cao Y., Huang L., Gao M., Hongge P. 2011. Rareearth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries, Journal of Alloysa and Compounds 509: 675- 686.
  • 16. Hong K. 2001. The development of hydrogen storage alloys and the progress of nickel hydride batteries, Journal of Alloys and Compounds, 321: 307–313.
  • 17. Tliha M., Khaldi C., Boussami S., Fenineche N., El-Kedim O., Mathlouthi H., Lamloumi J. 2014. Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: a review, 18: 577-593.
  • 18. Notten P.H.L., Latroche M. 2009.Secondary Batteries: Nickel–Metal Hydride: Metal Hydrides, Encyclopedia of Electrochemical Power Source, Amsterdam: Elsevier, 4: 502-521.
  • 19. Ratnakumart B. V., Witbam C., Bowman R. C., HightowerJr., A., Fultz B. 1996. Electrochemical Studies on LaNi5-xSnx Metal Hydride Alloys, Journal of The Electrochemical Society, 143(8): 2578-2583.
  • 20. Han J.I., Lee J.-Y. 1989. Hydridingkinetics of LaNi5 and LaNi4,7Al0,3, International HydrogenEnergy, 14(3):181-186.
  • 21. Balogun M.-S., Wang Z.-M., Chen H.-X,Deng J.-Q, Yao Q.-R., Zhou H.-Y. 2013. Effect of Al content on structure and Electrochemical properties of LaNi4.4- xCo0.3Mn0.3Alx hydrogen storage alloys, International Journal of Hydrogen Energy, 38: 10926-10931.
  • 22. Liu J., Yang Y., Yu P., Li Y., Shao H. 2006. Electrochemical characterization of LaNi5−xAlx (x = 0.1–0.5) in the absence of additives, Journal of Power Sources, 161:1435-1442.
  • 23. Zhang W. 1993. Cimato J., Goudy A. J., ‘The hydriding and dehydriding kinetics of some LaNi5-xAlxalloys, Journal of Alloys and Compounds, 201: 175-179.
  • 24. Willems J.J.G., Buchow K.H.J. 1987.From Permanent Magnets to Rechargeable Hydride Electrodes, Journal of theLess-CommonMetals, 129: 13-30.
  • 25. Sakai T., Oguro K., Miyamura H., Kuriyama N., Kato A., Ishikawa H. 1990. Some factors affecting the cycle lives of LaNi5-based alloy electrodes of hydrogen batteries, Journal of theLess-Common Metals, 161: 193-202.
  • 26. Asano K., Yamazaki Y. , IijimaY. 2003.Hydriding and dehydriding processes of LaNi5-xCox (x=0–2) alloys under hydrogen pressure of 1–5 MPa, Intermetallics 11: 911–916.
  • 27. Ming Q., Shuhui L., Peilin Q., Zhiqiang L., Jin G. 2011. The influence of Cocontent on LaNi3.2-xMn03Cox(x=0.2~0.8) Alloy Hydrogen Storage and Electrochemical Properties, 2011 International Conference on PhysicsScienceandTechnology (ICPST 2011), Physics Procedia 22: 577-583.
  • 28. Pandey S.K., Srivastava A., Srivastava O.N. 2007. Improvement in hydrogen storage capacity in LaNi5 through substitution of Ni by Fe, International Journal of Hydrogen Energy, 32: 2461-2465.
  • 29. Young K., Ouchi T., Reichman B., Koch J.,. Fetcenko M.A. 2011. Improvement in the low-temperature performance of AB5 metal hydride alloys by Fe-addition, Journal of Alloys and Compounds, 509: 7611–7617.
  • 30. Young K.-H., Nei J. 2013. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications, Materials, 6: 4574-4608.
  • 31. Liu J., Yang Y., Li Y., Yu P., He Y., Shao H. 2007. Comparative study of LaNi4.7M0.3 (M=Ni, Co, Mn, Al) by powder micro electrode technique, International Journal of Hydrogen Energy, 32: 1905 – 1910.
  • 32. Li S.L., Wang P., Chen W., Luo G., Han X.B., Chen D.M., Yang K. 2010. Study on hydrogen storage properties of LaNi3.8Al1.2-xMnx alloys, International Journal of Hydrogen Energy, 35: 12391-12397.
  • 33. Borzone E.M., Blanco M.V., Baruj A., Meyer G.O. 2014. Stability of LaNi5-xSnx cycled in hydrogen, International Journal of HydrogenEnergy, 39: 8791-8796.
  • 34. Ratnakumar B.V., Witbam C., Bowman R.C., Hightower Jr.-A., Fultz B .1996. Electrochemical Studies on LaNi5-xSnx Metal HydrideAlloys, Journal of The Electrochemical Society, 143(8):2578-2584.
  • 35. Srivastava S., Srivastava O.N. 1998. Investigations on synthesis, characterization and hydrogenation behaviour of the spin- and thermal-melted versions of LaNi5-xSix (x=0.1, 0.3, 0.5) hydrogen storage materials, Journal of Alloys and Compounds, 267:240–245.
  • 36. Adzic G.D., Johnson J.R., Reilly J.J., McBreen J., Mukerjee S., Kumar M.P.S., Zhang W., Srinivasan S. 1995. Cerium Content and Cycle Life of Multi component AB5 Hydride Electrodes, Journal of The Electrochemical Society, 142(10): 3429-3433.
  • 37. Chen J. ,Dou S.X., Liu H.K. 1996. Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes’, Journal of PowerSources, 63: 267-270.
  • 38. AdzicG.D., JohnsonJ.R., MukerjeeS., McBreenJ., ReillyJ.J. 1997. Function of cobalt in AB5Hx electrodes, Journal of Alloys and Compounds, 253–254: 579–582.
  • 39. Hu W.-K. 1998. Effect of microstructure, composition and non-stoichiometry on electrochemical properties of low-Co rare-earth nickel hydrogen storage alloys, Journal of Alloys and Compounds, 279: 295–300.
  • 40. Zhang X., Chai Y., Yin W., and Zhao M. 2004.Crystal structure and electrochemical properties of rare earthnon-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery, Journal of Solid State Chemistry ,177: 2373–2377.
  • 41. Zhang Y.-H., Chen M.-Y., Wang X.-L., Wang G.-Q, Lin Y.-F., Qi Y., ‘Effect of boron additive on the cycle life of low-Co AB5-type electrode consisting of alloy prepared by cast and rapid quenching’, Journal of Power Sources, 125, 273–279, 2004
  • 42. Tang R., Zhang Z., Liu L., Liu Y., Zhu J., Yu G. 2004. Study on a low-cobalt Ml0.8Mg0.2Ni3.2Co0.3Al0.3 alloy, International Journal of Hydrogen Energy, 29: 851 – 858.43. Young K., Chao B., Huang B., Nei J. 2014. Studies on the hydrogen storage characteristic of La1-xCex(NiCoMnAlCuSiZr)5.7 with a B2 secondary phase,Journal of Alloys and Compounds, 585: 760–770.
  • 44. Yao Q., Tang Y., Zhou H., Deng J., Wang Z., Pan S., Rao G., Zhu Q. 2014. Effect of rapid solidification treatment on structure and Electrochemical performance of low-Co AB5-type hydrogen storage alloy, Journal of Rare Earths, 32(6): 526-531.
  • 45. Wei G., Han S., Danyang X., Yuan L., Ming L., Lirong M., Lin H. 2006. Phase Structure and Electrochemical Characteristics of Ml(Ni3.55Co0.75Mn0.40Al0.30)5x (x = 0.88, 0.92, 0.96, 1.00) Hydrogen Storage Alloys, Journal of Rare Earths 24: 227-231.
  • 46. Jiang L., Zhan F., Bao D., Qing G., Li Y., Wei X. 1995. Low cost AB5-type hydrogen storage alloys for a nickel-metal hydride battery, Journal of Alloys and Compounds 231: 635-638.
  • 47. Iwakura C., Ikoma K., Nohara S., Furukawa N., Inoue H. 2005. Capacity Retention Characteristics of Nickel-Metal HydrideBatteries with Polymer Hydrogel Electrolyte, Electrochemical and Solid-State Letters, 8(1): A45-A47.
  • 48. Ming Q., Shuhui L., Peilin Q., Zhiqiang L., Jin G. 2011. The influence of Co content on LaNi3.2-xMn0.3Cox (x=0.2~0.8)Alloy Hydrogen Storage and Electrochemical Properties, Physics Procedia, 22: 577-583.
  • 49. Ozaki T.,Yang H.-B., Iwaki T., Tanase S., Sakai T., Fukunaga H., Matsumoto N., Katayama Y., Tanaka T., Kishimoto T., Kuzuhara M. 2006. Development of Mg-containing MmNi5-based alloys for low-cost and high-power Ni–MH battery, Journal of Alloys and Compounds, 408–412: 294-300.
  • 50. ReillyJ.J., Adzic G.D., Johnson J.R., Vogt T., Mukerjee S., McBreen J. 1990. The correlation between composition and electrochemical properties of metal hydride electrodes, Journal of Alloys and Compounds, 293–295(20): 569-582.
  • 51. Nakano H., WakaoS. 1995. Substitution effect of elements in Zr-based alloys with Laves phase for nickel-hydride battery, Journal of Alloys and Compounds, 231: 587-593.
  • 52. Ulmer U., Dieterich M., Pohl A., Dittmeyer R., Linder M., Fichtner M., 2017. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys, International Journal of Hydrogen Energy, 42(31): 20103-20110.
  • 53. Balcerzak M. 2017. Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys, International Journal of Hydrogen Energy, 42(37): 23698-23707.
  • 54. Liu W., Kawabe Y., Liang F., Okuyama R., Lin J., Wang L. 2013. A composite based on Fe substituted TiVNi alloy: Synthesis, structure and electrochemical hydrogen storage property, Intermetallics 34: 18-22.
  • 55. Liu Y.F. , Zhang S.S., Li R., Gao M.X., Zhong K., Miao H. 2008. Electrochemical performances of the Pd-added Ti–V-basedhydrogen storage alloys. International Journal of Hydrogen Energy, 33: 728–734.
  • 56. Miao H., Gao M.X., Liu Y.F., Lin Y., Wang J.H., Pan H.G. 2007. Microstructure and electrochemical properties of Ti–V-based multi phase hydrogen storage electrode alloys Ti0.8Zr0.2V2.7Mn0.5Cr0.8-xNi1.25Fex (x= 0.0–0.8), International Journal of Hydrogen Energy, 32: 3947–3953.
  • 57. Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T. 2008. Vanadium-based solid solution alloys with three dimensional network structure for high capacity metalhydride electrodes, Journal of Alloys and Compounds, 253-254: 583–586.
  • 58. Tsukahara M., Takahashi K., Mishima T., Isomura A., Sakai T. 1996. V-based solid solution alloys with Laves phase network: hydrogen absorption properties and microstructure, Journal of Alloys and Compounds, 236: 151–155.
  • 59. Tsukahara M., Takahashi K., Mishima T., Sakai T., Miyamura H., Kuriyama N. 1995. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0  x 0.75), Journal of Alloys and Compounds, 226: 203–207.
  • 60. Pan H.G.,Zhu Y.F., Gao M.X., Wang Q.D. 2002. Investigation of thestructural and electrochemical properties ofsuperstoichiometric Ti–Zr–V–Mn–Cr–Ni hydrogen storage alloys, Journal of The Electrochemical Society, 149(7): A829–833.
  • 61. Yu X.B., Wu Z., Xia B.J., Xu N.X. 2005. Electrochemical performance of ball-milled Ti–V-based electrode alloy, International Journal of Hydrogen Energy 30: 273 – 277.
  • 62. Pan H., Li R., Gao M., Liu Y., Lei Y., Wang Q. 2006. Effects of Ni on the structural and electrochemical properties ofTi–V-based hydrogen storage alloys, International Journal of Hydrogen Energy, 31:1188 – 1195.
  • 63. 63. Challet S., Latroche M., Heurtaux F. 2007. Hydrogenation properties and crystal structure of the single BCC(Ti0.355V0.645)100−xMx alloys with M = Mn, Fe, Co, Ni (x = 7, 14 and 21), Journal of Alloys and Compounds, 439:294–301.
  • 64. Ma P., Wu E., Li W. 2014. Hydrogen storage properties and microstructures of Ti0.7Zr0.3(Mn1−xVx)2 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloy, International Journal of Hydrogen Energy, 39(25): 13569-13575.
  • 65. Mazzolai G. 2008. Some physical aspects of hydrogen behaviour in the H-Storage bcc alloys Ti35VxCr65−x, Ti40VxMn50−xCr10 and TixCr97.5−xMo2.5, International Journal of Hydrogen Energy, 33(23): 7116-7121.
  • 66. Kumara S., Singh P.K., Kojima Y., Kain V. 2018. Cyclic hydrogen storage properties of V-Ti-Cr-Al alloy, International Journal of Hydrogen Energy, 43(14): 7069-7101.
  • 67. Gao M., Miao H., Zhao Y., Liu Y., Pan H. 2009. Effects of rare earth elements substitution for Ti on the structure and electrochemical properties of a Fe-doped Ti–V-based hydrogen storage alloy, Journal of Alloys and Compounds, 484(1–2): 249-255.
  • 68. Zhang X., Sun D., Yin W., Chai Y., Zhao M. 2006. Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3.5 − x(Al0.5Mo0.5)x (x = 0–0.8) hydrogen storage alloys, Journal of Power Sources, 154: 290–297.
  • 69. Xiao L., Wang Y., Liu Y., Song D., Jiao L., Yuan H. 2008. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen storage alloy, International Journal of Hydrogen Energy, 33: 3925– 3929.
  • 70. Shi S., Li C., Tang W. 2009. Crystallographic and electrochemical performances of La–Mg–Ni–Al–Mo-basedalloys as anode materials for nickel–metal hydride batteries, Journal of Alloys and Compounds, 476: 874–877.
  • 71. Zhang Y.-H., Dong X.-P., Wang G.-Q., Guo S.-H., Ren J.-Y., Wang X.-L. 2007. Effect of boron additive on electrochemical cycling life of La–Mg–Ni alloyscprepared by casting and rapid quenching, International Journal of Hydrogen Energy 32: 594 – 599.
  • 72. Wang X.-L., Zhang Y.-H., Zhao D.-L., Dong X.-P., Guo S.-H., Wang G.-Q. 2007. Effects of Cr addition on the microstructures and Electrochemical performances of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy,Journal of Alloys and Compounds, 446–447: 625–629.
  • 73. Zhang Y.-H., Li B.-W., Ren H.-P., Cai Y., Dong X.-P., Wang X.-L. 2007. Effects of substituting Ni with Cu on the microstructures and Electrochemical characteristics of the as-cast andquenched La0.7Mg0.3Ni2.55−xCo0.45Cux(x =0.0.4) electrode alloys, International Journal of Hydrogen Energy, 32: 3420 – 3426.
  • 74. Kadir K., Sakai T., Uehara I. 1997. Synthesis and structure determination of a new series of hydrogen storagealloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layers alternating with AB5 layer’, Journal of Alloys and Compounds, 257: 115-121.
  • 75. Kadir K., Sakai T., Uehara I. 1999. Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5 )(MgCa)Ni9 : new phases in the AB2C9 system isostructural with LaMg2Ni9,Journal of Alloys and Compounds, 287: 264–270.
  • 76. Chu H.-L., Qiu S.-J., Sun L.-X., Zhang Y., Xu F., Jiang T., Li W.-X., Zhu M., Hu W.-Y. 2007. The improved electrochemical properties of novel La–Mg–Ni-basedhydrogen storage composites, Electrochimica Acta, 52: 6700–6706.
  • 77. Zhu M., Peng C.H., Ouyang L.Z., Tong Y.Q. 2006. The effect of nanocrystalline formation on the hydrogen storageproperties of AB3-base Ml–Mg–Ni multi-phase alloys, Journal of Alloys and Compound,s 426: 316–321.
  • 78. Qi Y.-N., Xu F., Chu H.-L., Sun L.-X., Jiang T., Zhu M. 2007. The electrochemical properties of AB3/polyaniline composites, International Journal of Hydrogen Energy, 32: 4894 – 4899.
  • 79. Binal Aybar A., Anik M. 2017.Direct synthesis of La-Mg-Ni-Co type hydrogen storage alloys from oxide mixtures, Journal of Energy Chemistry, 26(4): 719-723.
  • 80. Anik M., Binal Aybar A., Küçükdeveci N., Erken H., Baksan B., Gaşan H., Hatirnaz N.B., Lökçü E. 2015. Synthesis of La2Ni7 hydrogen storage alloy by the electro-deoxidation technique, International Journal of Hydrogen Energy, 40(5): 2248-2254.
  • 81. Chen J., KuriyamaN., Takeshita H. T., Tanaka H., Sakai T., Haruta M. 2000. Hydrogen Storage Alloys with PuNi3-Type Structureas Metal Hydride Electrodes, Electrochemical and Solid-State Letters, 3(6): 249-252.
  • 82. Zhang, F.L. Luo Y.C., Sun K., Wang D.H., Yan R.X., Kang L., Chen J.H. 2006. Structure and electrochemical properties of La2−xMgxNi7.0 (x = 0.3–0.6) hydrogen storage alloys, Journal of Alloys and Compounds, 424: 218–224.
  • 83. Pan H.G., Liu Y.F.,. Gao M.X, Zhu Y.F., Lei Y.Q., Wang Q.D. 2003. A study on the effect of annealing treatment on the electrochemical properties of La0.67Mg0.33Ni2.5Co0.5 alloy electrodes, International Journal of Hydrogen Energy, 28(1):113–117.
  • 84. Vermeulen P.,.Niessen R.A.H, Nottena P.H.L. 2006. Hydrogen storage in metastable MgyTi(1 − y) thin films’, Electrochemistry Communications, 8(1): 27-32.
  • 85. Huang H.X., Huang K.L., Liu S.Q., Chen D.Y. 2010. Microstructures and electrochemical properties of Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) hydrogen storage alloys, Powder Technology, 198(1): 144-148.
  • 86. Selvam P., Viswanathan B., Swamy C.S., Srinivasan V. 1986. Magnesium and magnesium alloy hydrides, International Journal of Hydrogen Energy, 11(3): 169-192.
  • 87. Cui N., Luan B., Liu H.K., Zhao H.J., Dou S.X. 1995. Characteristics of magnesium-based hydrogen-storage alloy electrodes, Journal of Power Sources, 55(2): 263-267.
  • 88. Anık M. 2010. Electrochemical hydrogen storage capacities of Mg2Ni and MgNi alloys synthesized by mechanical alloying, Journal of Alloys and Compounds, 491(1–2): 565-570.
  • 89. Anık M., Karanfil F, Küçükdeveci N. 2012. Development of the high performance magnesium based hydrogen storage alloy, International Journal of Hydrogen Energy, 37(1): 299-308.
  • 90. NiessenaR. A. H. and Nottena P. H. L. 2005. Electrochemical Hydrogen Storage Characteristics of Thin Film MgX, X = Sc, Ti, V, Cr… Compounds,Electrochemical and Solid-State Letters, 8(10): A534-A538.
  • 91. KalisvaartW.P., NiessenR.A.H., and Notten P.H.L. 2006. Electrochemical hydrogen storage in MgSc alloys: A comparative study between thin films and bulk materials,Journal of Alloys and Compounds,417(1-2):280-291.
  • 92. Luo J.L., Cui N., He P. 1999. Synthesis and characterization of nanocrystalline magnesium-based hydrogen storage alloy electrode materials, Electrochimica Acta, 44: 3549-3558.
There are 91 citations in total.

Details

Primary Language Turkish
Journal Section Corrigendum
Authors

Nilüfer Küçükdeveci

Publication Date December 28, 2018
Submission Date June 7, 2018
Acceptance Date November 27, 2018
Published in Issue Year 2018

Cite

IEEE N. Küçükdeveci, “Şarj Edilebilir Nikel-Metal Hidrür (Ni-MH) Pillerinde Kullanılan Hidrojen Depolama Alaşımlarındaki Son Gelişmeler”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 454–472, 2018, doi: 10.17798/bitlisfen.431673.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr